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A B S T R A C T

The periodically supported Timoshenko beam subjected to moving forces has been investigated by numerous
researches. The existed models have been developed for linear supports, and this article presents a new one for
nonlinear supports. By using a periodic condition and the Fourier series development, the dynamic equation of
the Timoshenko beam leads to a relation between the beam displacements and the reaction forces of the sup-
ports. This relation does not depend on the support behaviour and it exists also for the Euler-Bernoulli beam.
Then, the responses can be obtained by combining this relation and the constitutive law of the supports. A
numerical method based on discretization of the time and frequency responses has been developed for nonlinear
supports. Moreover, the influence of the beam model has been studied with numerical examples of linear and
nonlinear supports. The results show that the Timoshenko beam should be used for the moving forces with high
speed and/or the supports with large stiffness.

1. Introduction

The periodically supported beam subjected to moving forces has
been investigated in numerous publications [1–10]. In these articles,
the Euler-Bernoulli or Timoshenko beams resting on identical supports
at periodical intervals have been considered in steady-state. The re-
sponse to moving forces are calculated analytically when the supports
are linear. However, these models cannot be extended easily for non-
linear supports. Recently, the dynamics of a periodically supported
beam has been represented by the system equivalence [11] by using a
periodic condition of reaction forces. This model could work for non-
linear supports, but the author has not presented a method to compute
the dynamical responses. Some other researches have considered the
model of beams on nonlinear foundations (i.e. the beam is supported
continuously) by using the perturbation technique [12–14], the Ga-
lerkin method [15] or the numerical methods [16,17].

This article presents a complete analytic model for the dynamics of
beams resting on periodic nonlinear supports. A relation between the
beam displacement and the reactions forces has been established from
the periodic condition and the dynamic equation of the Timoshenko
beam. Then, a numerical method has been developed to compute the
response form this relation and the constitutive law of the nonlinear
supports. Moreover, a comparison between the Timoshenko and Euler-
Bernoulli beam models has been performed with numerical examples of

linear and nonlinear behaviours.

2. Periodically supported Timoshenko beam

2.1. Dynamical equations in steady-state

Let’s consider an infinite Timoshenko beam resting on identical
supports at periodical intervals as shown in Fig. 1. The beam is sub-
jected to the moving forces Qj characterized by the distance to the first
force Dj. Let R t( )n be the reaction force of a support at the coordinate
=x nl (with ∈n ).
In steady-state, we suppose that all supports are equivalent and their

responses are described by the same function, but with a delay which
equals to the time for the forces to cover the distance between them. In
other words, the reaction force repeats when the moving forces pass
from one support to another

= ⎛
⎝
− ⎞

⎠
R t R t nl

v
( )n (1)

where R t( ) is the reaction force of the support at the origin of the re-
ference system =x 0. The total force applied on the beam can be re-
presented with the help of the Dirac functions
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In addition, we have the dynamic equations of the Timoshenko
beam
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where w ϕ,r r are the displacement and the rotation of the section of the
beam; ρ E, are the density, the Young’s modulus and S I κ G, , , are the
section, the inertia, the shear coefficient and the shear modulus of the
beam.

Eqs. (2) and (3) define the dynamics of the beam and its supports in
the steady-state. Thereafter, we will resolve these equations by per-
forming a Fourier transform with regard to the time t, and then using
the Fourier series development with regard to x. Let’s denote ∂ ∂,t x the
derivations with regard to t and x. By performing the Fourier transform
of Eq. (3) with regard to t, we obtain
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where the hat stands for the Fourier transform with regard to t. Parti-
cularly, we obtain the following result from Eq. (2)
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Thus, Fe xω
v
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is periodic with regard to x. Therefore, if we put
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Eq. (4) becomes
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By the Floquet’s theorem [18], Eq. (7) has a periodic solution. We
can find this solution by using the Fourier series developments of Φ and
Ψ (see Appendix A). Thereafter, by combining the results of Ψ and Φ
with Eq. (6) we obtain
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where ∈∼∼p q n, ( )n n are the Fourier coefficients of Ψ, Φ calculated by
Eq. (A7) in Appendix A. We can reduce Eq. (8) by defining
η x ω γ x ω( , ), ( , ) as follows
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Indeed, η γ, in the last equation can be reduced to simple analytical

functions as shown in Eqs. (B11) and (B14) of Appendix B. Then, by
substituting Eq. (9) into Eq. (8), we obtain
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Eq. (10) is a simple relation between the Fourier transforms of the beam
displacement and the reaction force. This is a result of the periodicity
condition and the dynamic equation of the Timoshenko beam, which do
not depend on the support behaviour. Once the reaction force is cal-
culated, this equation can be used to compute the response of the beam.
In the next section, we will introduce a system equivalence based on
this relation.

2.2. System equivalence

In order to calculate the reaction force of the support, we need to
compute the displacement of the beam at the support position

=w t w t( ) (0, )r , or its Fourier transform ̂ ̂=w ω w ω( ) (0, )r . By sub-
stituting =x 0 into Eq. (10), we have
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Hence, we can also write

K Q ̂= +R ω w ω( ) ( )T T (12)

where KT and QT are defined by

K Q K ∑= = ∼−

=

−η ω p l
v

Q e(0, ) andT T T
j

K

j
i ω

v D1
0

1

j

(13)

with ∼p ω η ω( ), (0, )0 are calculated by Eqs. (A10) and (B15) in the ap-
pendices.

Eq. (12) is a linear relation between the force and the displacement
applied on the support at =x 0, and it holds for all supports because of
the periodicity condition. This relation is the same as the constitutive
law of an equivalent spring with stiffness KT and pre-force QT . There-
fore, we call the system equivalence of a periodically supported Ti-
moshenko beam, which existed also for Euler-Bernoulli beams (see
[11]). Eq. (12) explains the distribution mechanism of the moving
forces Qj to the supports via the beam. When a moving force comes
toward and leaves away the support along the direction of the beam,
the reaction force of the support increases and decreases respectively.
This process is the same as a force applied on the support via the
equivalent spring.

The comparison of the system equivalences with two parameters
stiffness and pre-force for Euler-Bernoulli and Timoshenko beams is
shown in Table 1 where the beam parameters correspond to a rail
UIC60 [14]. We see that the stiffnessK depends on two parameters λ1,2
and C1,2 which are different between the two beam models. However, if
the shear modulus κG and the ratio E ρ/ tend to infinity, λ1,2 and C1,2 of
the Timoshenko beam tend to the ones of the Euler-Bernoulli beam.
Therefore, the stiffness and pre-force for the two beam models are
equivalent when the Timoshenko beam does not include the shear
modulus κG and the ratio E ρ/ . This phenomenon agrees well with the
beam theories.

Figs. 2 and 3 show an example of the stiffness and the pre-force for
the Timoshenko and the Euler-Bernoulli beams with the parameters
presented in Table 2. We see that the two beam models give almost the
same equivalent pre-force. Otherwise, the Timoshenko beam gives a
smaller equivalent stiffness than the Euler-Bernoulli beam. This differ-
ence comes from the fact that the Euler-Bernoulli beam has less degree
of freedom. It is remarkable that the difference takes place only at the
maximum peaks of the stiffness which correspond to high frequencies.
In other words, the influence of the beam models is more important at
high frequencies. In the next sections, we will calculate the responses

Fig. 1. Forces applied on a periodically supported beam.
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