Author's Accepted Manuscript

Coordination and redox interactions of β -lactam antibiotics with Cu²⁺ in physiological settings and the impact on antibacterial activity

Bojana Božić, Jelena Korać, Dalibor M. Stanković, Marina Stanić, Mima Romanović, Jelena Bogdanović Pristov, Snežana Spasić, Ana Popović-Bijelić, Ivan Spasojević, Milica Bajčetić

PII: S0891-5849(18)31121-3 DOI: https://doi.org/10.1016/j.freeradbiomed.2018.09.038 Reference: FRB13940

To appear in: Free Radical Biology and Medicine

Received date:24 June 2018Revised date:17 September 2018Accepted date:23 September 2018

Cite this article as: Bojana Božić, Jelena Korać, Dalibor M. Stanković, Marina Stanić, Mima Romanović, Jelena Bogdanović Pristov, Snežana Spasić, Ana Popović-Bijelić, Ivan Spasojević and Milica Bajčetić, Coordination and redox interactions of β -lactam antibiotics with Cu²⁺ in physiological settings and the impact on antibacterial activity, *Free Radical Biology and Medicine*, https://doi.org/10.1016/j.freeradbiomed.2018.09.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Coordination and redox interactions of β -lactam antibiotics with Cu^{2+} in physiological settings and the impact on antibacterial activity

Bojana Božić,^a Jelena Korać,^b Dalibor M. Stanković,^{c,d} Marina Stanić,^b Mima Romanović,^b Jelena Bogdanović Pristov,^b Snežana Spasić,^d Ana Popović-Bijelić,^e Ivan Spasojević,^{b*} Milica Bajčetić^{a,f}

^aDepartment of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, P.O. Box 38, 11000 Belgrade, Serbia

^bLife Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia

^cThe Vinča Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade, Serbia

^dInnovation Center of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia

^eEPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia

^fClinical Pharmacology Unit, University Children's Hospital, 11000 Belgrade, Serbia

*Corresponding author: Tel: +381 11 2078459; Fax: +381 11 3055289, redoxsci@gmail.com

Abstract

An increase in the copper pool in body fluids has been related to a number of pathological conditions, including infections. Copper ions may affect antibiotics via the formation of coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu^{2+} with eight β -lactam antibiotics using UV-Vis spectrophotometry, EPR spectroscopy, and electrochemical methods. Penicillin G did not show any detectable interactions with Cu^{2+} . Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral coordination environment of Cu^{2+} with tetragonal distortion, and primary amine group as the site of coordinate bond formation. These β -lactams increased the solubility of Cu^{2+} in the phosphate buffer. Ceftazidime and Cu^{2+} formed a complex with a similar geometry and gave rise to an

Download English Version:

https://daneshyari.com/en/article/11029430

Download Persian Version:

https://daneshyari.com/article/11029430

Daneshyari.com