Accepted Manuscript

Effect of zinc on structure, optical and magnetic properties and magnetic heating efficiency of $Mn_{1-x}Zn_xFe_2O_4$ nanoparticles

PHYSICA B CARRESTO MATTA

P.H. Nam, N.X. Phuc, P.H. Linh, L.T. Lu, D.H. Manh, P.T. Phong, In-Ja Lee

PII: S0921-4526(18)30565-9

DOI: 10.1016/j.physb.2018.09.004

Reference: PHYSB 311044

To appear in: Physica B: Physics of Condensed Matter

Received Date: 09 May 2018

Accepted Date: 04 September 2018

Please cite this article as: P.H. Nam, N.X. Phuc, P.H. Linh, L.T. Lu, D.H. Manh, P.T. Phong, In-Ja Lee, Effect of zinc on structure, optical and magnetic properties and magnetic heating efficiency of Mn_{1-x}Zn_xFe₂O₄ nanoparticles, *Physica B: Physics of Condensed Matter* (2018), doi: 10.1016/j. physb.2018.09.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of zinc on structure, optical and magnetic properties and magnetic heating efficiency of $Mn_{1-x}Zn_xFe_2O_4$ nanoparticles

P. H. Nam^{1,2}, N. X. Phuc³, P. H. Linh², L. T. Lu⁴, D. H. Manh², P. T. Phong^{5, 6,*}, In-Ja Lee⁷

¹Graduate University of Science and Technology, Vietnam Academy of Science and Technology,

18 Hoang Quoc Viet, Hanoi, Viet Nam

²Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, CauGiay District, Ha Noi, Viet Nam

³DuyTan University, K7/25 Quang Trung Street, Da Nang City, Viet Nam.

⁴Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang

Ouoc Viet, Hanoi, Vietnam

⁵Theoretical Physics Research Group, Advanced Institute of Materials Science, Ton Duc Thang
University, Ho Chi Minh City, Viet Nam

⁶Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam

⁷Department of Advanced Materials Chemistry, Dongguk University-Gyeongju, Dongdaero 123,

Gyeongju-Si, Gyeongbuk 38066, Korea

Abstract. $Mn_{1-x}Zn_xFe_2O_4$ ($0 \le x \le 0.7$) nanoparticles were synthesised by a hydrothermal process. X-ray diffraction patterns reveal that all samples have spinel crystalline structures. Scanning electron microscopy and X-ray diffraction patterns show that nanoparticles are near-spherical in morphology and their average size is 13-45 nm. The elemental analysis was carried out by energy dispersive X-ray analysis technique. The optical direct band gap of $Mn_{1-x}Zn_xFe_2O_4$ nanoparticle decreases from 2.38 to 1.88 eV as the Zn content increases. Moreover, the saturation magnetisation at room temperature tends to decrease with increasing Zn content. The specific absorption rate (SAR) values were measured at a fixed frequency of 178 kHz with

Download English Version:

https://daneshyari.com/en/article/11029461

Download Persian Version:

https://daneshyari.com/article/11029461

Daneshyari.com