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a b s t r a c t

Three-way data can be conveniently modelled by using matrix variate distributions.
Although there has been a lot of work for the matrix variate normal distribution, there
is little work in the area of matrix skew distributions. Three matrix variate distributions
that incorporate skewness, as well as other flexible properties such as concentration, are
discussed. Equivalences to multivariate analogues are presented, and moment generating
functions are derived. Maximum likelihood parameter estimation is discussed, and simu-
lated data is used for illustration.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Matrix variate distributions are useful in modelling three way data, e.g., multivariate longitudinal data. Although the 2

matrix normal distribution is widely used, there is relative paucity in the area of matrix skewed distributions. Herein, 3

we discuss matrix variate extensions of three already well established multivariate distributions using matrix normal 4

variance–mean mixtures. Specifically, we consider a matrix variate generalized hyperbolic distribution, a matrix variate 5

variance–gammadistribution, and amatrix variate normal inverse Gaussian (NIG) distribution. Alongwith thematrix variate 6

skew-t distribution, mixtures of these respective distributions have been used for clustering (Gallaugher and McNicholas, 7

2018); however, unlike the matrix variate skew-t distribution (Gallaugher and McNicholas, 2017), their properties have yet 8

to be discussed and this letter aims to fill that gap. 9

2. Background 10

2.1. The matrix variate normal and related distributions 11

One of the most mathematically tractable examples of a matrix variate distribution is the matrix variate normal 12

distribution. An n × p random matrix X follows a matrix variate normal distribution if its probability density function 13

can be written as 14

f (X|M,Σ,Ψ) =
1

(2π )
np
2 |Σ|

p
2 |Ψ|

n
2
exp

{
−

1
2
tr
(
Σ−1(X − M)Ψ−1(X − M)′

)}
, 15

whereM is an n×p locationmatrix,Σ is an n×n scalematrix for the rows of X andΨ is a p×p scalematrix for the columns 16

of X . We denote this distribution byNn×p(M,Σ,Ψ) and, for notational clarity, we will denote the randommatrix by X and 17

its realization by X. One useful property of the matrix variate normal distribution, as given in Harrar and Gupta (2008), is 18

X ∼ Nn×p(M,Σ,Ψ) ⇐⇒ vec(X ) ∼ Nnp(vec(M),Ψ ⊗ Σ), (1) 19
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whereNnp(·) denotes themultivariate normal distributionwith dimension np, vec(·) denotes the vectorization operator, and1

⊗ denotes the Kronecker product.2

Although the matrix variate normal is probably the most well known matrix variate distribution, there are other3

examples. For example, theWishart distribution (Wishart, 1928) was shown to be the distribution of the sample covariance4

matrix for a random sample from a multivariate normal distribution. There are also a few examples of a matrix variate5

skew normal distribution such as Chen and Gupta (2005), Domínguez-Molina et al. (2007) and Harrar and Gupta (2008).6

Most recently, Gallaugher and McNicholas (2017), considered a matrix variate skew-t distribution using a matrix normal7

variance–mean mixture.8

There are also a few examples of mixtures of matrix variate distributions. Anderlucci and Viroli (2015) considered9

a mixture of matrix variate normal distributions for clustering multivariate longitudinal data and Doğru et al. (2016)10

considered a mixture of matrix variate t distributions.11

2.2. The inverse and generalized inverse Gaussian distributions12

The derivation of the matrix distributions and parameter estimation discussed in Section 3, will rely heavily on the13

generalized inverse Gaussian distribution, and to a lesser extent the inverse Gaussian distribution. A random variable Y14

follows an inverse Gaussian distribution if its probability density function is of the form15

f (y|δ, γ ) =
δ
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16

for y > 0, where δ, γ > 0. For notational purposes, we will denote this distribution by IG(δ, γ ).17

The generalized inverse Gaussian distribution has two different parameterizations, both ofwhichwill be useful. A random18

variable Y has a generalized inverse Gaussian distribution parameterized by a, b > 0 and λ ∈ R, denoted by GIG(a, b, λ), if19

its probability density function can be written as20

f (y|a, b, λ) =
(a/b)
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for y > 0, where22
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is the modified Bessel function of the third kind with index λ. Some expectations of functions of a GIG random variable with24

this parameterization have a mathematically tractable form, e.g.,25
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Although this parameterization of the GIG distribution will be useful for parameter estimation, for the purposes of27

deriving the density of the matrix variate generalized hyperbolic distribution, it is more useful to take the parameterization28

g(y|ω, η, λ) =
(w/η)λ−1

2ηKλ(ω)
exp
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ω

2
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w
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w

)}
, (2)29

where ω =
√
ab and η =

√
a/b. For notational clarity, we will denote the parameterization given in (2) by I(ω, η, λ).30

2.3. Variance–mean mixtures31

A p-variate random vector X defined in terms of a variance–mean mixture, has a probability density function of the form32

f (x) =

∫
∞

0
φp(x|µ + wα, wΣ)h(w|θ)dw,33

where the random variable W > 0 has density function h(w|θ), and φp(·) represents the density function of the p-variate34

Gaussian distribution. This representation is equivalent to writing35

X = µ + Wα +
√
WV, (3)36

where µ is a location parameter, α is the skewness, V ∼ Np(0,Σ) with Σ as the scale matrix, and W has density37

function h(w|θ). Note that W and V are independent. Many multivariate distributions can be obtained through a variance–38

mean mixture by changing the distribution of W . For example, the p-dimensional generalized hyperbolic distribution,39



Download	English	Version:

https://daneshyari.com/en/article/11029701

Download	Persian	Version:

https://daneshyari.com/article/11029701

Daneshyari.com

https://daneshyari.com/en/article/11029701
https://daneshyari.com/article/11029701
https://daneshyari.com/

