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a b s t r a c t

Let Z be a standard normal random variable and let Hn denote the nth Hermite polynomial.
In this note, we obtain Stein equations for the random variables H3(Z) and H4(Z), which
represent a first step towards developing Stein’s method for distributional limits from the
third and fourth Wiener chaoses. Perhaps surprisingly, these Stein equations are fifth and
third order linear ordinary differential equations, respectively. As a warm up, we obtain
a Stein equation for the random variable aZ2

+ bZ + c , a, b, c ∈ R, which leads us to a
Stein equation for the non-central chi-square distribution. We also provide a discussion as
to why obtaining Stein equations for Hn(Z), n ≥ 5, is more challenging.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

1.1. Background 2

In 1972, Stein (1972) introduced a powerful technique for deriving distributional bounds for normal approximation. 3

Stein’s method for normal approximation rests on the following characterisation of the normal distribution:W ∼ N(0, 1) if 4

and only if 5

E[f ′(W ) − Wf (W )] = 0 (1.1) 6

for all real-valued absolutely continuous functions f such that E|f ′(Z)| < ∞ for Z ∼ N(0, 1). This characterisation leads to 7

the so-called Stein equation: 8

f ′(x) − xf (x) = h(x) − Nh, (1.2) 9

where Nh denotes Eh(Z) for Z ∼ N(0, 1), and the test function h is real-valued. It is straightforward to verify that 10

f (x) = ex
2/2

∫ x
−∞

[h(t)−Nh]e−t2/2 dt solves (1.2), and bounds on the solution and its derivatives in terms of the test function h 11

and its derivatives are given in Chen et al. (2011) and Döbler et al. (2017). Evaluating both sides of (1.2) at a random variable 12

W and taking expectations gives 13

E[f ′(W ) − Wf (W )] = Eh(W ) − Nh. (1.3) 14
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Thus, the problem of bounding the quantity |Eh(W ) − Nh| has been reduced to bounding the left-hand side of (1.3). For a1

detailed account of the method see the book (Chen et al., 2011).2

In recent years, one of themost significant applications of Stein’s method for normal approximation has been to Gaussian3

analysis on Wiener space. This body of research was initiated by Nourdin and Peccati (2009), in which Stein’s method and4

Malliavin calculus are combined to derive a quantitative fourthmoment theorem for the normal approximation of a sequence5

of random variables living in a fixed Wiener chaos. A detailed account of normal approximation by the Malliavin–Stein6

method can be found in the book (Nourdin and Peccati, 2012).7

One of the advantages of Stein’s method is that the above procedure can be extended to treat many other distributional8

approximations; examples include the Poisson (Chen, 1975), gamma (Gaunt et al., 2017; Luk, 1994), exponential (Chatterjee9

et al., 2011; Peköz and Röllin, 2011) and variance-gamma distributions (Gaunt, 2014). The Malliavin–Stein method is also10

applicable to other limits, such as the multivariate normal (Nourdin et al., 2010), exponential and Pearson families (Eden11

and Viens, 2013; Eden and Viquez, 2015), centered gamma (Döbler and Peccati, 2018; Nourdin and Peccati, 2009), variance-12

gamma (Eichelsbacher and Thäle, 2015), linear combinations of centered chi-square random variables (Arras et al., 2018,13

2017; Azmooden et al., 2015; Nourdin and Poly, 2012), as well as a large family of distributions, such as the uniform, log-14

normal and Pareto distributions, that satisfy a diffusive assumption (Kusuoka and Tudor, 2012). These works have resulted15

in analogues of the celebrated fourth moment theorem for non-normal limits.16

However, despite these advances, there are many important distributional limits that fall outside the current state of the17

art of the Malliavin–Stein method. As noted by Peccati (2014), an important class of limits for which little is understood are18

those of the type P(Z), where Z ∼ N(0, 1) and P is polynomial of degree strictly greater than 2. In particular, the case that P19

is a Hermite polynomial is of particular interest, due to their fundamental role in Gaussian analysis and Malliavin calculus.20

Let Hn(x) be the nth Hermite polynomial, defined by Hn(x) = (−1)nex
2/2 dn

dxn (e
−x2/2), n ≥ 1, and H0(x) = 1. The first six

Hermite polynomials are then

H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x, H6(x) = x6 − 15x4 + 45x2 − 15.

In this note, we consider the problem of extending Stein’s method to the random variables Hn(Z). Of course, the case n = 121

is very well understood. The case n = 2 corresponds to the centered chi-square random variable Z2
− 1. This is a special22

case of the centered gamma distribution, for which the Malliavin–Stein method is also highly tractable; see Azmoodeh et al.23

(2014, 2016), Döbler and Peccati (2018) and Nourdin and Peccati (2009). As with Stein’s method for normal approximation,24

at the heart of Stein’s method for H2(Z) = Z2
− 1 is the Stein equation25

2(1 + x)f ′(x) − xf (x) = h(x) − N2h, (1.4)26

where Nih denotes the quantity E[h(Hi(Z))], i ≥ 1. The Stein equation (1.4) follows by applying a simple translation to the27

classic gamma Stein equation of Diaconis and Zabell (1991) and Luk (1994). Estimates for the solution of the gamma Stein28

equation (Döbler et al., 2017; Döbler and Peccati, 2018; Gaunt et al., 2017; Luk, 1994) can then be used to bound the solution29

of (1.4) and its derivatives. The problem of approximating a random variableW by H2(Z) is thus reduced to the tractable one30

of bounding the quantity E[2(1 + W )f ′(W ) − Wf (W )].31

Recently, Arras et al. (2017) obtained a Stein equation for random variables of the form F∞ =
∑q

i=1αi(Z2
i − 1), where the32

αi are real-valued constants and Z1, . . . , Zq are independent N(0, 1) random variables. Their Stein equation for F∞ was qth33

order if the αi are all distinct, and to date no bound exists for the solution of the Stein equation when q ≥ 3; the case q = 234

corresponds to the variance-gamma Stein equation, and bounds from Döbler et al., (2017) and Gaunt, (2014) can be used.35

Despite not being able to bound the solution of the Stein equation in general, their Stein equation motivated a Stein kernel36

for F∞ that was used in Arras et al. (2018) to bound the 2-Wasserstein distance between a random variable F belonging to37

the second Wiener chaos and the limit F∞.38

1.2. Summary of results39

In this note, we consider the problem of extending Stein’s method to Hn(Z), n ≥ 3. In particular, we study the problem
of finding Stein equations for Hn(Z), n ≥ 3. Indeed, our main results are the following Stein equations (see Propositions 2.4
and 2.5) for H3(Z) and H4(Z):

486(4 − x2)f (5)(x) − 486xf (4)(x) − 27(8 − x2)f (3)(x)
+ 99xf ′′(x) + 6f ′(x) − xf (x) = h(x) − N3h, (1.5)

and

192(x + 6)(3 − x)f (3)(x) + 16(x + 3)(x − 12)f ′′(x)
+ 4(11x + 6)f ′(x) − xf (x) = h(x) − N4h. (1.6)

The first striking feature of the Stein equations (1.5) and (1.6) is that they are fifth and third order linear differential equations,40

respectively. There is a dramatic increase in complexity from the Stein equations (1.2) and (1.4) for H1(Z) and H2(Z) to the41
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