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a b s t r a c t

This paper studies yet another semiparametric bias-corrected density estimation using
asymmetric kernels. The estimator can be obtained bymaking amultiplicative bias correc-
tion for the initial parametric model twice, and it is shown to establish rate improvement
when best implemented.
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1. Introduction 1

This paper aims at establishing rate improvement via yet another multiplicative bias correction (‘‘MBC’’) method for 2

univariate probability density estimation using asymmetric kernels. For a random variable X ∈ R drawn from a distribution 3

with an unknown density f , the MBC method considered throughout is based on the identity 4

f (x) ≡ g (x)
{

f (x)
g (x)

}
:= g (x) r (x) , (1) 5

where g (x) is an initial density estimator and r (x) serves as a correction factor. 6

In what follows, the support of X is assumed to have a boundary; to be more specific, supp (X) is assumed to be either 7

[0, 1] or R+. This type of data can be frequently observed in economics and finance. For example, recovery rates take values 8

between 0 and 1, whereas variables such as wages, incomes and insurance claims (or financial losses) are by construction 9

nonnegative. A convenient way of avoiding boundary bias due to kernel smoothing for such data is to employ asymmetric 10
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Table 1
Functional forms of asymmetric kernels.

Kernel (j) Kj(x,b) (u)

B (Chen, 1999) KB(x,b) (u) =
ub/x(1−u)(1−x)/b

B{b/x+1,(1−x)/b+1} 1 {u ∈ [0, 1]} .

MB (Chen, 1999) KMB(x,b) (u) =
uϱb,0(x)−1

(1−u)ϱb,1(x)−1

B{ϱb,0(x),ϱb,1(x)}
1 {u ∈ [0, 1]} ,

where ϱb,0 (x) =

{
ϱb (x) for x ∈ [0, 2b)
x/b for x ∈ [2b, 1] ,

ϱb,1 (x) =

{
(1 − x) /b for x ∈ [0, 1 − 2b]
ϱb (1 − x) for x ∈ (1 − 2b, 1] , and

ϱb (x) = 2b2 + 5/2 −
√
4b4 + 6b2 + 9/4 − x2 − x/b.

G (Chen, 2000) KG(x,b) (u) =
ux/b exp(−u/b)
bx/b+1Γ (x/b+1)

1 {u ≥ 0} .

MG (Chen, 2000) KMG(x,b) (u) =
uρb(x)−1 exp(−u/b)

bρb(x)Γ {ρb(x)}
1 {u ≥ 0} ,

where ρb (x) =

{
x/b for x ≥ 2b
(1/4) (x/b)2 + 1 for x ∈ [0, 2b)

.

NM (Hirukawa and Sakudo, 2015) KNM(x,b) (u) =
2uα−1 exp

[
−{u/(βΓ (α/2)/Γ ((α+1)/2))}2

]
{βΓ (α/2)/Γ ((α+1)/2)}αΓ (α/2) 1 {u ≥ 0} ,

where (α, β) =

{
(x/b, x) for x ≥ 2b(
(1/4) (x/b)2 + 1, x2/(4b) + b

)
for x ∈ [0, 2b) .

kernels. Let Kj(x,b) (·) be the asymmetric kernel indexed by j that depends on a design point x and a smoothing parameter1

b. We exclusively consider the beta (‘‘B’’ ) and modified beta (‘‘MB’’) kernels for supp (X) = [0, 1] and the gamma (‘‘G’’),2

modified gamma (‘‘MG’’) and Nakagami-m (‘‘NM’’) kernels for supp (X) = R+. Functional forms of these kernels are3

presented in Table 1. Although our main focus is on the kernels, the results in this paper can be straightforwardly extended4

to a wide variety of asymmetric kernels that have been proposed so far (e.g., Jin and Kawczak, 2003; Scaillet, 2004). Using a5

random sample {Xi}
n
i=1 and the kernel j ∈ {B,MB,G,MG,NM}, we investigate the estimator of f of the form implied by the6

identity (1)7

f̃j (x) := g (x) r̂j (x) := g (x)

{
1
n

n∑
i=1

Kj(x,b) (Xi)

g (Xi)

}
. (2)8

9

A few special cases of the estimator of this class have been already considered in the literature. First, if we take g (x) ≡ 110

(i.e., (improper) uniform density), then f̃j collapses to an ordinary asymmetric kernel density estimator (‘‘AKDE’’)11

f̂j (x) =
1
n

n∑
i=1

Kj(x,b) (Xi) . (3)12

Second, when g (x) belongs to a parametric family, f̃j (x) reduces to the Hjort and Glad (1995, ‘‘HG’’)-type semiparametric13

MBC estimator f̃HG,j (x) studied by Hagmann and Scaillet (2007). Third, if g (x) is set equal to the AKDE (3), then f̃j (x) becomes14

the Jones et al. (1995, ‘‘JLN’’)-type fully nonparametric MBC estimator f̃JLN,j (x) examined by Hirukawa (2010) and Hirukawa15

and Sakudo (2014).16

The HG-MBC estimator has a O (b) bias in general, as the initial parametric model is typically misspecified. It becomes17

unbiased up to the order considered only under correct specification of the model. In contrast, the JLN-MBC estimator18

improves the bias convergence from O (b) to O
(
b2

)
even in the worst-case scenario (i.e., under misspecification), provided19

that the true density has sufficient smoothness. Then, within the framework of density estimation using standard symmetric20

kernels, Jones et al. (1999, ‘‘JSH’’) attempt tomake themost of attractive features inHG- and JLN-MBCby applying yet another21

MBC step to the HG-MBC estimator. The resulting estimator has a O
(
b2

)
bias in general, and it becomes unbiased in the22

best-case scenario (i.e., under correct specification).23

This paper extends JSH’s proposal to asymmetric kernel density estimation. Because the JSH-MBC technique does not24

affect the order of magnitude in variance, the mean integrated squared error (‘‘MISE’’) of our MBC estimator is in the form25

of O
(
b4 + n−1b−1/2

)
. Therefore, when best implemented, the estimator can achieve a O

(
n−8/9

)
MISE-convergence, which26

is faster than O
(
n−4/5

)
, the optimal convergence rate in MISE within the class of nonnegative kernel estimators. Moreover,27

the estimator is a semiparametrically bias-corrected one with rate improvement. In this sense, this paper can be positioned28

as a complement to the existing literature on semiparametric (e.g., Hagmann and Scaillet, 2007; Gustafsson et al., 2009) and29

nonparametric (e.g., Hirukawa, 2010; Hirukawa and Sakudo, 2014) MBC density estimations using asymmetric kernels.30
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