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Abstract

We extend the classical notion of spherical depth for data in R to the case of data on a Riemannian manifold. We show
that this notion has several desirable properties. The uniform consistency and limiting distribution of an empirical
analogue of this depth function are studied. Consistency is also shown for functional data. Various illustrations
involving Riemannian manifold data are included.
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1. Introduction

Depth concepts have become a fundamental tool in modern statistics. Over the last three decades, data depth
has emerged as a powerful notion which leads to a center-outward ordering of multivariate data and, more recently,
functional data. Beyond leading to the notions of robust multivariate center (median) and trimmed means, the concept
has found many other applications in recent years. It has been applied successfully to supervised and unsupervised
learning, hypothesis testing, and outliers detection; see, e.g., the seminal paper by Liu et al. [27].

The notion of depth was first introduced in [48] for bivariate data sets and it was extended to higher dimensions
in [14]. Several other notions were later introduced, such as convex hull peeling depth [4], Oja depth [35], simpli-
cial depth [25], spatial depth [49] and spherical depth [17], among others. In particular, several notions have been
introduced in the functional data setting in the recent past.

Half-space, simplicial, spatial depth and spherical depth are fundamental and their properties have been studied
extensively. They share a list of desirable properties that were introduced in [25] for the simplicial depth and studied
in [44] for general depth notions. These desirable properties are the following.

P1) Invariance with respect to a group of transformations. Affine invariance or orthogonal invariance.

P11: Affine invariance: The depth should not depend on the coordinate system and, in particular, on the scales
of the underlying measurements.

P12: Orthogonal invariance: The depth should not depend on the coordinate system and the global scale.

P2) Maximality at center: For a distribution having a uniquely defined “center”, such as the point of symmetry with
respect to some notion of symmetry (invariance under a suitable family of transformations like angular, central,
elliptical or spherical symmetry), the depth should attain a maximum value at this center. Observe that all of
these notions of symmetry coincide with the usual notion of symmetry for one dimensional data.

P3) Monotonicity relative to deepest point: When a point moves away from the “deepest point”, through a ray, the
depth decreases.

P4) Vanishing at infinity.

Serfling [43] also mentioned some key perspectives that are relevant to the choice of a procedure in nonparametric
multivariate analysis. In particular to take into account dimensionality (“Typically, data in R* has structure of lesser
dimension than the nominal £””) and computional complexity (“The feasibility of computation is a function of the size
n and and dimension k of the data, with practical limitations arising in the case of higher k.”)
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