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A B S T R A C T

Mixed Generalized Ordered Response (MGOR) models, that allow random heterogeneity in
thresholds, are widely used to model ordered outcomes such as accident injury severity. This
study highlights a potential limitation of these models, as applied in most empirical research, that
the variances of the random thresholds are implicitly assumed to be in a non-decreasing order.
This restriction is unnecessary and can lead to difficulty in estimation of random parameters in
higher order thresholds. In this study, we investigate the use of negative correlations between
random parameters as a variance reduction technique to relax the property of non-decreasing
variances of thresholds in MGOR models. To this end, a simulation-based approach was used
(where multiple datasets were simulated assuming a known negative correlation structure be-
tween the true parameters), and two models were estimated on each dataset – one allowing
correlations between random parameters and the other not allowing such correlations. Allowing
negative correlations helped relax the non-decreasing variance property of MGOR models.
However, maximum simulated likelihood estimation of parameters on data with correlations
occasionally encountered model convergence and parameter identification issues. Comparison of
the models that did converge suggests that ignoring correlations leads to an estimation of fewer
random parameters in the higher order thresholds and results in bias and/or loss of precision for
a few parameter estimates. However, ignoring correlations leads to an adjustment of other
parameter estimates such that overall likelihood values, predicted percentage shares, and the
marginal effects are similar to those from the models with correlations.
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1. Introduction

Ordered outcomes, such as those encountered in accident-injury severity (no injury, injury, fatality), measurements of satisfaction
(highly dissatisfied, dissatisfied, neutral, satisfied, highly satisfied), measurements of levels of agreement or disagreement (strongly
disagree, disagree, neutral, agree, strongly agree), and so on, are often modeled using ordered response models. These models have a
potential advantage over unordered response models, such as the multinomial logit model and its variants, because ordered models
recognize the inherent ordinal pattern of outcome responses. Standard ordered response models are based on an underlying con-
tinuous latent propensity function that is assumed to be a function of observed explanatory variables and an unobserved random
component (Aitchison and Silvey, 1957; McKelvey and Zavoina, 1975; Washington et al., 2011). The latent propensity function is
mapped to observed outcomes using a set of thresholds that are increasing in order. The major drawback associated with this
standard ordered response (SOR) model is that it assumes the thresholds to be same for all individuals, which might not be ap-
propriate in all applications.

To overcome this threshold restriction in the standard ordered response models, Maddala (1986) and Ierza (1985) proposed a
generalized-thresholds version of the ordered response model where the thresholds were expressed as a linear function of explanatory
variables. As an extension to this model structure, Srinivasan (2002) expressed the thresholds as correlated random variables with
their mean as a linear function of observed explanatory variables. However, this linear specification of thresholds does not ensure the
increasing order of thresholds and might result in negative probabilities (Greene and Hensher 2010a). To address this issue, Eluru
et al. (2008) and Greene and Hensher (2010b) used a nonlinear specification for thresholds where each threshold was obtained by
adding a non-negative term to the preceding threshold, so that the ordering of thresholds was ensured. The non-negative term was
specified as an exponential function of a linear function of explanatory variables. Researchers have termed this generalized-
thresholds version as the generalized ordered response model. To avoid confusion with the model names used in the literature, we
term the linear-thresholds specification models as the ordered mixed response (OMR) model and the nonlinear-thresholds specifi-
cation generalized ordered response (GOR) model. With regard to the GOR model, to account for heterogeneity in the parameter
estimates due to unobserved factors, researchers have considered random parameters in both the propensity function and the
thresholds. This model structure is referred to as the mixed generalized ordered response (MGOR) model by Eluru et al. (2008) and
hierarchical ordered probit (HOPIT) model by Greene and Hensher (2010a). We use the term “MGOR” hereafter to avoid confusion
with the model names. It is worth noting here that the random parameters in the thresholds are typically assumed to follow dis-
tributions with an unbounded support, such as the normal distribution.

Due to the flexibility offered by generalized ordered response (GOR) and mixed generalized ordered response (MGOR) models
relative to the standard ordered response (SOR) model, many researchers (Yasmin et al. 2015a, 2015b; Forbes and Habib 2015;
Fountas and Anastasopoulos 2017) have used these models in various contexts. Chiou et al. (2013) proposed a bivariate generalized
ordered probit model and used it to model accident-injury severities in two-vehicle crashes. Castro et al. (2013) developed spatial
random parameters generalized ordered probit model to accommodate the spatial dependencies in the accident-injury severity levels.
Yasmin et al. (2014b) proposed a latent segmentation based generalized ordered logit model assuming the presence of different latent
groups of observations. Table 1 summarizes various studies that have used the GOR family of models in the context of modeling
traffic accident injury severity outcomes.1

Despite the above-discussed evolution of the MGOR family of models, to the best of our knowledge, all implementations of the
MGOR models to date impose an implicit restriction on the order of variances of thresholds. Specifically, as discussed earlier, the
thresholds in ordered response models must be in an increasing order, which is ensured in MGOR models by specifying a higher order
threshold as a sum of its preceding threshold and a non-negative random term that is typically in the form of an exponential function.
Such a hierarchical specification of thresholds with random parameters leads to the restriction that the variances of thresholds are
also in a non-decreasing order. However, this restriction is not necessary and can potentially lead to difficulty in the estimation of
random parameters in higher order thresholds (more later).

To be sure, the MGOR model structure, in its very general form, does allow the analyst to relax the non-decreasing order of
threshold variances. This can be done in at least two ways. The first approach is to allow negative correlations between the random
parameters of different thresholds. Since a higher order threshold is specified as a sum of two terms (its preceding threshold with
random parameters and an exponential term with random parameters), negative correlation between the two terms allows for the
overall variance of the higher order threshold to be lower than the variance of its preceding threshold. The second approach is to use
truncated distributions for thresholds, where the distribution of a higher order threshold is left-truncated by the distribution of its
preceding threshold. Between these two approaches, the former is easier to implement. The latter approach is a non-trivial2 mod-
ification of the MGOR structure, albeit it is a fruitful avenue for future research. Even in the context of the former approach, we are
not aware of studies in the literature that explored correlated random parameters in MGOR models.

1 Mannering et al. (2016), provide a general discussion of unobserved heterogeneity in accident injury-severity modeling. Apart from the accident
injury-severity modeling, there are other research areas (sociology, psychology and economics) that have used OMR and MGOR model structures
(Pudney and Shields, 2000; Boes and Winkelmann, 2006; Greene et al., 2008; Baba, 2009; Mentzakis and Moro, 2009; Boes and Winkelmann, 2010;
Stanley et al., 2011; Greene et al., 2014; and Shabanpour et al., 2017).
2 The left truncation point of the distribution for a higher order threshold is another random variable (given by the distribution of the preceding

threshold), as opposed to a deterministic value. Therefore, deriving an MGOR model structure with randomly truncated threshold distributions is a
non-trivial extension and beyond the scope of this paper.
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