Accepted Manuscript

Particle-induced damage in Fe-TiB2 high stiffness metal matrix composite steels

Ding Wang, Pratheek Shanthraj, Hauke Springer, Dierk Raabe

PII: S0264-1275(18)30727-5

DOI: doi:10.1016/j.matdes.2018.09.033

Reference: JMADE 7394

To appear in: Materials & Design

Received date: 22 May 2018
Revised date: 4 September 2018
Accepted date: 16 September 2018

Please cite this article as: Ding Wang, Pratheek Shanthraj, Hauke Springer, Dierk Raabe, Particle-induced damage in Fe—TiB2 high stiffness metal matrix composite steels. Jmade (2018), doi:10.1016/j.matdes.2018.09.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Particle-induced damage in Fe – TiB₂ high stiffness metal matrix composite steels

Ding Wang¹, Pratheek Shanthraj^{1,2}, Hauke Springer^{1,*}, Dierk Raabe¹

¹Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany ²The School of Materials, The University of Manchester, M13 9PL Manchester, UK

Abstract

Fe – TiB₂ metal matrix composites, termed high modulus steels, have great potential for lightweight design applications due to their high stiffness/density ratio. However, the observed embrittlement, caused by the TiB₂ particles, critically limits application of these steels. Experimental studies to identify the influence of particle microstructure on ductility and toughness is complex in view of the multitude of parameters affecting microstructural damage. We therefore pursue instead an integrated computational materials engineering approach to gain understanding and derive guidelines for optimizing the particle microstructure and thus improve the mechanical properties, particularly the damage tolerance of these high modulus steels. Key microstructural parameters such as particle clustering degree, size and volume fraction were investigated. Model geometries were statistically and systematically generated with varied particle configurations from random to clustered distributions. Simulations were performed using a crystal plasticity Fast Fourier transformation method coupled with a novel phase field damage model. The influence of particle configuration on damage initiation and evolution was evaluated from the simulation results, and it was observed that microstructures with homogeneous particle distributions of 7 to 15 vol.% TiB₂ devoid of large TiB₂ particles stemming from primary solidification, appear most favorable for obtaining high modulus steels with optimized mechanical properties.

Keywords: metal matrix composites; damage simulation; particle damage; phase field method; spectral method

Download English Version:

https://daneshyari.com/en/article/11029845

Download Persian Version:

https://daneshyari.com/article/11029845

<u>Daneshyari.com</u>