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a b s t r a c t 

The packing of soft elastic structures is an important and challenging problem due to the possibility of 

multiple discrete and continuous zones of contact between different parts of the material. To address this 

problem, we consider the simplest possible packing problem of a thin elastic ring confined within another 

shorter flexible ring. The elastic properties as well as the dimensionality of both structures, combined 

with the contact condition yield a wide a variety of possible equilibrium shapes. When the rings are as- 

sumed to be inextensible and unshearable, the equilibrium shapes depend only on their relative bending 

stiffness κ , and on their relative length μ. Whereas the symmetric equilibria for such a problem have 

been completely determined, the possibility of asymmetric equilibria with lower energy has not yet been 

considered. For a fixed value of the relative bending stiffness, we explore these symmetry-breaking equi- 

libria as the length of the inner ring increases. We show that, for μ� 1.9 there is a symmetry-breaking 

bifurcation and asymmetric equilibria are preferred in order to relax the elastic energy. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Many natural and man-made structures are obtained by the 

constrained packing of materials within a given volume. Therefore, 

a natural problem is to determine the morphology of confined flex- 

ible materials. This problem has many applications in nature such 

as DNA packaging [23] , mitochondria organization [3] , the mor- 

phology of plant leaves in buds [17] and even in arterial diseases 

[6,26] . Packing and folding problems play also a key role in op- 

timization and design of flexible devices [16,27] . Further, beyond 

the elastic regime, thin sheets can develop intricate ridge networks 

when folded and crumpled [1] . More recently, the problem of con- 

fined elastic curves has gained interest amongst mathematicians 

[7,9,15,18] and control engineers [2] . 

The confinement of a single flexible membrane or elastic sheet 

inside a rigid container has been studied extensively, both in two 

dimensions [4,8,13,21,24] and in three dimensions [5,14] . Whereas 

most of these studies assume that the container is fixed, the 

pressure created by the confined material can also deform the 

container [25,28] . For instance microtubules surrounded by lipid 

membranes, can deform the membrane significantly [10] . The pos- 

sibility of deforming the restraining structure creates very rich sys- 

tems that can exhibit a wide variety of shapes depending on the 

geometric and material properties. A paradigm for such problem is 
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the case of two nested elastic rings. In [20] we studied the exis- 

tence of symmetric solutions (with respect to an axis) by increas- 

ing the length of the inner ring up to the first point of contact. 

The energy minimizer within the set of symmetric solutions was 

identified and studied as a function of the relative stiffness and 

length. The effect of adhesion and external pressure was also stud- 

ied. However, this study did not consider the solution after the 

first self contact and was restricted to symmetric solutions. The 

present work addresses both issues and it generalizes the analysis 

of Boue and co-workers [4,24] by taking into account the flexibil- 

ity of the container. The main result is the existence of a generic 

symmetry-breaking bifurcation where asymmetric shape become 

global minimizers of the problem. Such non-symmetric minimizers 

in self-contact problems are also known in other elastic problems 

[4,11,19,22] . 

2. The model 

We consider the planar equilibria of a one-dimensional elastic 

ring constrained in another shorter elastic ring. We assume that 

the rings are inextensible and unshearable and neglect friction. Fix- 

ing, without loss of generality, the length of the outer ring to be 

one, we use the length of the inner ring μ as the main control 

parameter and think of an increase in length as a growth process. 

Generically, the geometry of the problem includes portions where 

the two rings are in contact or the inner ring touches itself. These 

regions evolve as the relative length changes. Thus, regions of the 

rings that are initially separated may end up in contact during the 
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Fig. 1. Schematic representation of an equilibrium shape. The Y − nodes are located 

in correspondence of the red dot, while the X − node is represented by the blue 

dot. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

growth-induced packing process. We suppose that when material 

points are in contact they have a common position in the plane. 

Thus, stack of rods that are in contact in a finite region can be 

described by a planar elastica , endowed with a suitable bending 

stiffness. Consequently, the structure can be understood as a closed 

graph with inextensible elastic edges of unknown length. There are 

two kinds of nodes: (i) Y − nodes where a stack of layers in con- 

tact bifurcates tangentially into two groups, and (ii) X − nodes at 

which two rods meet at a single point (see Fig. 1 ). 

Following the notation of Goriely [12] , a point p on the curve 

can be parameterized by its Cartesian coordinates 

r (s ) = x (s ) e x + y (s ) e y , (1) 

where s is the arc length. Denoting ψ( s ) the angle between the 

tangent τ( s ) and the horizontal axis e x , we have 

τ( s ) ≡ r ′ ( s ) = cos ψ ( s ) e x + sin ψ ( s ) e y , (2) 

where a prime denotes the differentiation with respect to s . By re- 

placing (1) into (2) , we obtain: 

x ′ ( s ) = cos ψ ( s ) , y ′ ( s ) = sin ψ ( s ) , (3) 

that should be solved together with the mechanical balance equa- 

tions given below. 

Each rod must obey the balance of angular momentum that, in 

the absence of external distributed torques, reads 

m 

′ (s ) + τ(s ) × n (s ) = 0 , (4) 

where m and n are the resultant couple and force, respectively. 

Moreover, the balance of linear momentum in the absence of ex- 

ternal distributed loads assures that n is constant along each edge. 

According to the Euler–Bernoulli theory of rods, the internal mo- 

ment for a planar deformation is proportional to the curvature 

c = d ψ/ d s, so that: 

m (s ) = kc(s ) e z , (5) 

where k is the bending stiffness and e z = e x × e y . We denote by k −
and k + the bending stiffness of the inner and of the outer ring, re- 

spectively. If the edge represents a stack of rods then k is the sum 

of the bending stiffnesses of all rods in the stack. Thus, (4) reduces 

to the second order ordinary differential equation 

kψ 

′′ ( s ) − n x sin ψ ( s ) + n y cos ψ ( s ) = 0 , (6) 

where n x and n y , the horizontal and vertical components of n , are 

among the unknowns of the problem. 

Boundary conditions are imposed at the nodes whose locations 

are a priori unknowns. At a Y -node, a mother edge bifurcates into 

two daughter edges (each of these edges could be a single rod or 

a stack of rods). These groups must obey the balance [20] 

n + n 1 + n 2 = 0 ; (7a) 

ψ 

′ = ψ 

′ 
1 = ψ 

′ 
2 , (7b) 

where quantities without subscript refer to the mother edge (the 

adhered region), while quantities with subscripts 1 and 2 refer to 

the daughter edges. Eq. (7a) represents the balance of the force at 

the node, while (7b) expresses the continuity of the curvature at 

the detachment point. Note that (7b) implies that x ( s ), y ( s ), and 

ψ( s ) are continuous at the node, for each curve. 

At a X -node, two edges meet at an isolated point. Again, we 

require that each ring has continuous curvature at the node: 

� ψ 

′ 
1 � = � ψ 

′ 
2 � = 0 , (8) 

where � ·� denotes the jump of a quantity at the node relative to 

the same rod. Further, since the contact is assumed to be friction- 

less the rods can freely glide on each other. This implies that the 

tangential component of n is continuous for each edge. However, 

the (unilateral) contact constraint induces a jump of the normal 

component of n at the node. The force conditions read: 

� n 1 � · τ = � n 2 � · τ = 0 , (9a) 

(� n 1 � + � n 2 � ) · ν = 0 , (9b) 

where ν = e z × τ is the normal to the curve. 

Finally, we have to satisfy two global constraints: the sums of 

the lengths of edges belonging to the inner (resp. outer) rings must 

be L − (resp. L + = 1 ), where L − and L + are the lengths of the inner 

and outer loop, respectively. 

3. Results 

We are interested in computing the shape as a function of the 

two dimensionless parameters 

μ := 

L −
L + 

and κ := 

k + 
k −

. 

An increase in μ corresponds to a lengthening of the inner loop 

and in increase in κ represents a (relative) stiffening of the outer 

loop. We examine the shapes for three different representative val- 

ues of κ: κ = 10 (very stiff container), κ = 1 (same stiffness), and 

κ = 0 . 1 (very flexible container). 

We solve the problem numerically by using the Matlab rou- 

tine bvp4c . For each edge of length � , there are seven unknowns 

{ x ( s ), y ( s ), ψ( s ), ψ 

′ ( s ), n x , n y , � }. The unknowns { x ( s ), y ( s ), ψ( s ), 

ψ 

′ ( s )} are related to four first order differential equations: the two 

kinematic relations (3) and the balance of the angular momentum 

(6) (notice that (6) can be written as a system of two first order 

differential equations). The remaining three unknowns { n x , n y , � } 

are constant parameters that can be determined by the boundary 

conditions together with the use of the global constraint on the 

rings length. 

A simple count reveals that there are 14 boundary conditions at 

a X -node and 10 for a Y -node. However, the boundary conditions 

at the nodes are not sufficient to obtain a unique solution since the 

equations are invariant under rigid transformations (planar transla- 

tions and rotations about e z ). From a computational point of view, 

it is therefore necessary to introduce a fictitious node, that we call 

the fixed point . Thus, the introduction of the fixed point increases 

the number of edges by one. At the fixed point, we assign its po- 

sition (two boundary conditions) and the orientation of the curve 
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