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A B S T R A C T

For gaseous flows in the slip flow regime, the power of the viscous stress at the wall is not zero. From the fluid
domain point of view, it is a sink term, or a lost heat flux, that must be taken into account. It must be added to the
diffusive heat flux in the fluid to appropriately model the heat flux transmitted from the fluid to the wall and the
temperature field. The present technical note aims at theoretically establishing the appropriate thermal condi-
tions in a general context: both thick and thin walls are considered as well as for imposed temperature (H1),
imposed heat flux (H2) and convective heat transfer (H3) at the wall. Recent validations of this model, resulting
from experimental and numerical comparisons of the convective heat transfer at the walls, are briefly discussed.

1. Introduction

In the last decades, the research activities about convective heat
transfer in microdevices have rapidly been growing due to the con-
siderable development of engineering applications. The Knudsen
number, =Kn L/ , defined as the ratio of the gas molecular mean-free-
path, λ, to a characteristic length scale, L, such as the hydraulic dia-
meter of a duct, allows a measure of the validity of the continuum
approach and a classification of the gas flow regimes [1,2]. For

< <Kn0.001 0.1, the flow regime is called the slip-flow regime: the
continuum assumption is still valid in the flow core but slip conditions,
i.e. velocity slip, temperature jump and thermal creep, must be con-
sidered at the solid boundaries of the flow domain, to model the pre-
sence of the Knudsen layer (the very thin layer in a thermodynamical
non-equilibrium state close to the solid boundary).

The flow field solution, described by a system of non-linear partial
differential equations (conservation equations resulting from the
Newton law, the first law of thermodynamics and the equation of state),
depends on initial and boundary conditions. The expressions of the
velocity-slip and thermal jump at solid walls for weakly rarefied flows
have been established for a long time, by Maxwell [3] and Smo-
luchowski [4] and discussed since then by many authors. These
boundary conditions that allow computing the fluid velocity and tem-
perature accounting for the Knudsen layer are commonly used (at first
or second order in Kn) in convective heat transfer modeling [5,6]. At

this stage, there are not major controversies in the heat transfer lit-
erature.

However, when >Kn 0.001, in particular for gas flows in micro-
devices, some changes need to be brought to the expression of the heat
flux transmitted through the wall: due to the slip velocity in the
Knudsen layer, the power of the viscous stress is not zero at the wall and
it must be taken into account in the thermal boundary condition to
satisfy the heat flux consevation. This was first introduced by Maslen
[7] and discussed by Sparrow and Lin [8]. Since then, only a few au-
thors have taken into account the power of the viscous stress at the wall
in their analysis of heat transfer [9–12]. So, as most of the authors
neglected this contribution, it was eventually forgotten. Then Hong and
Asako [13] reiterated its importance in 2010. However, it appears that
the heat transfer community still goes on ignoring this boundary con-
dition or uses it erroneously by considering that the imposed heat flux
at the wall only balances the diffusive flux transmitted to the fluid. It
can be thus underlined that most of the papers published in the archival
literature on forced convective heat transfer in microdevices have
provided erroneous values of the wall heat flux (or Nusselt number) or
temperature field due to ill prescribed thermal boundary conditions.

The present technical note specifically focuses on the appropriate
thermal boundary conditions for flows in microdevices in the slip re-
gime and for first order slip models. After the work by Maslen (1958)
[7] and Sparrow and Lin (1962) [8], the technical notes by Hadjicon-
stantinou (2003) [11],1 and Hong and Asako (2010) [13] and the
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1 Note that q0 in Eq. (5) of [11] is the “thermal” heat flux, that is the diffusive part of the heat flux exchanged between the wall and the fluid, and not the imposed
heat flux as considered by some authors [14], which led them to ill-interpretations of the boundary conditions.
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experimental and numerical verifications/validations by Shih et al.
(2001) [9] for adiabatic walls, by Miyamoto et al. (2003) [10] for
isoflux walls and Nicolas et al. (2017, 2018) [15,16] for isothermal
walls, we demonstrate here that the power of the viscous stress at the
wall must be included in the total heat flux transmitted by the fluid to
the wall as soon as a slipping flow occurs at the wall.

A general demonstration and expressions of the right boundary
conditions are provided. These BC's are established both for thick and
thin walls, and for the H1, H2 and H3 boundary condition types.
Finally, we briefly remind the published validations of the present
formulation for parallel-plate channels submitted to H1 or H2 boundary
conditions [9,10,15,16].

2. General expressions of the thermal conditions on a wall/
slipping gas interface

In this paper, we only focus on the thermal boundary conditions. For
the governing equations and the dynamical boundary conditions ap-
propriate to model flows of compressible dilute gases in the slip flow
regime, one can refer to our previous paper [16].

Let us first consider a gas flow domain of volume g with closed
surface g i ( =g i ), in contact along an interface i with a solid
wall of thickness e, volume w, and closed surface

= +w i w w e w i, ( =+w w e w i, ) (Fig. 1). We
are interested in writting the thermal conditions at the interface i be-
tween the gas flow domain and the solid wall. To that aim, the energy
equations in the gas and the solid are first integrated, for a steady
problem and without source or sink terms for the sake of simplicity.
Note that, even though the drawing in Fig. 1 is two-dimensional and the
wall is flat, the present demonstration and formulations are general and
can be applied to any three-dimensional geometry of the gas flow do-
main and solid wall.

By noting h the enthalpy and =e v /2c
2 the kinetic energy per mass

unit of the gas, the steady conservation equation of the total energy of
the gas writes (cf. page 341 in Ref. [17]):

+ =v h v e k T v. ( . ) 0c g g (1)

where the viscous stress tensor is defined for a Newtonian-Stokes fluid
by:

= +µ v v µ v I( ) 2
3

.t
(2)

and where v , Tg, ρ, kg and μ are the velocity, temperature, density,
thermal conductivity and dynamical viscosity of the gas. By integrating
Eq. (1) on g of closed surface g i (Fig. 1), considering the wall as
impermeable ( =v n. 0 on i) and using Gauss'theorem, we get:

+ + =

=

=
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qi
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(3)

where ng is the inward normal unit vector on g, directed from the wall
to the gas and denoted ni on i. In Eq. (3), the first integral term is the
sum of the enthalpy and kinetic energy convective fluxes, the con-
ductive heat flux and the power of the viscous stress through the fluid
boundary g; the second integral term represents the total heat flux, Qi
W[ ], transmitted by the fluid to the wall through the interface i. By
definition Qi is the integral on i of the total local heat flux density,

=q q n.i i i W m[ / ]2 , transmitted by the fluid through i. Thus qi is the
sum of the diffusive heat flux density and the power of the viscous stress
at the wall:

=q k T v n( ( . ) ).i g i g i g i i, , , (4)

where the subscript “g i, ” denotes quantities on the gas side of the gas/
wall interface (slip-related quantities associated with the gas molecules
in contact with the wall).

In the solid wall, with the used assumptions, the energy equation
simply writes:

=k T. ( ) 0w w (5)

with kw and Tw the thermal conductivity and temperature of the solid
wall. By integrating Eq. (5) on w of closed surface w i with

= +w w w e w, (Fig. 1) and using Gauss's theorem, we get:
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=

=
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where nw is the outward normal unit vector on w. Here the first in-
tegral term is the conductive heat flux through the solid boundary w
and the second integral is the conductive heat flux through i. This
second term thus represents the total heat flux transmitted by the solid
through the interface. It is therefore also equal to Qi since, from the
continuum mechanics laws, the heat flux is conserved through a zero
volume interface without source term. Furthermore, by identification,
the heat flux density transmitted locally by the solid wall through the
interface is:

=q k T n( ).i w i w i i, , (7)

where the subscript “w i, ” denotes quantities on the wall side of the
interface. Thus, from Eqs. (4) and (7), the conservation of the heat flux
density, qi, transmitted locally, through an infinitesimal gas/wall in-
terface d i, writes:

=k T n k T v n( ). ( ( . ) ).w i w i i g i g i g i i, , , , , (8)

When solving the energy equations (1) and (5) to compute the two
unknown temperature fields, Tg and Tw, for the gas and the wall, two
interface conditions are necessary. The first one is given by Eq. (8): it
expresses the total heat flux conservation through the interface. The
second one expresses the temperature jump between the local inter-
facial temperatures of the solid wall, T ,w i, and the gas, Tg i, . It reads
[6,18]:

Fig. 1. Notations for the solid wall, the flow domain, the interface, the boundary conditions and the temperature and velocity profiles.
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