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A B S T R A C T

In the paper, we develop a new two-level finite element algorithm for solving the 2D/3D stationary in-
compressible magnetohydrodynamics based on the Newton iterative method. This algorithm is consisting of
solving one nonlinear system on a coarse mesh with mesh size H and two linearized problems with different
loads on a fine mesh with mesh size h. Compared with existing work on the two-level method for the MHD
model, our two-level method allows a much high order scaling between the coarse and fine grid sizes.
Furthermore, stability and convergence of this present method are analyzed. Finally, the applicability and ef-
fectiveness of the present algorithm are illustrated by several numerical experiments.

1. Introduction

The stationary incompressible magnetohydrodynamics (MHD)
system models the motion of electrically conducting, incompressible
viscous flows in the presence of an external magnetic field, which is
governed by the Navier-Stokes equations of hydrodynamics and
Maxwell equations of electromagnetism coupled with the Lorentz's
force and Ohm's law. This model has much applications in many fields
of industry and life, such as stirring of liquid metal, process metallurgy,
electromagnetic pumping, MHD generators and so on.

In this paper, we consider stationary incompressible MHD model as
follows ([15,16]):
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with boundary conditions

= ⋅ = × = ∂u B n n B0, 0, curl 0, on Ω, (2)

where Ω⊂ Rd (d=2 or 3) is a convex polygonal/polyhedral domain, u
velocity field, B magnetic field, p pressure, Re hydrodynamic Reynolds
number, Rm magnetic Reynolds number, S coupling number, n outward
normal unit vector of ∂Ω and f and g are external force terms. Here,
u=(u1,u2,0), B=(B1,B2,0), f=(f1, f2,0), g=(g1,g2,0) for d=2, and

u=(u1,u2,u3), B=(B1,B2,B3), f=(f1, f2, f3), g=(g1,g2,g3) for d=3.
In the last two decades, there has been a rapid development in

numerical methods for solving the MHD model [1,4,5,14,19,24,26,28].
Particularly, some stabilized finite element formulations for the MHD
equations had been proposed by Badia et al. [3] and Salah et al. [25]. In
[17], mixed finite element approximation of incompressible MHD
problem in non-convex domains based on weighted regularization was
introduced and analyzed. Convergence analysis of three finite element
iterative methods for the 2D/3D stationary incompressible MHD pro-
blem was studied [11].

As is known, the two-level discretization [29,30] is an important
method to reduce computational cost and improve accuracy of finite
element solutions. By using this two-level strategy, Layton et al. [23]
have described and analyzed a two-level finite element method for
discretizing the MHD equations, which involves solving a small non-
linear problem on a coarse mesh and then one large linear problem on a
fine mesh. Further, a stabilizing subgrid method combined with the
two-level finite element method is described and applied to the MHD
Eqs. [2]. Zhang et al. [31] have proposed some two-level coupled
correction and decoupled parallel correction finite element methods for
solving the considered equations. Recently, Dong and He [9] have
presented a two-level Newton iterative method for the 2D/3D sta-
tionary incompressible MHD system. This strategy is solving a non-
linear problem on a coarse mesh H, then solving a linear problem on a
fine mesh h=O(H2) based on the MINI-element, and it can save a large
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computation time compared with the one-level method. However, it is
known that the two-level method is considered to be more effective for
the case h≪H, in particular for 3D problem.

Hence, it is important to find an efficient algorithm to increase the
ratio between H and h of the two-level method. Recently, Dai and
Cheng [12] have show a two-grid method for solving the Navier-Stokes
equations based on Newton iteration. This method involves solving one
small nonlinear system on a coarse mesh and two large linear problems
on the fine mesh, which allows a much higher order scaling between
the coarse grid size and fine grid size. Further, for the stream function
formulation of the stationary Navier-Stokes Eqs. [27], the transient
Navier-Stokes Eqs. [8], the Kelvin-Voigt model (one more term than the
transient Navier-Stokes equations) [6,7], the coupled Navier-Stokes and
Darcy system [20] and the natural convection Eqs. [21], the proposed
two-level schemes have also dramatically raised the ratio of the mesh
size between the coarse and fine grids.

This paper focuses on two-level method for the 2D/3D the sta-
tionary incompressible MHD model based on Newton iteration. The
main purpose is to improve scaling between the coarse grid size and
fine grid size, comparing with the existing work on the two-level
method based on Newton iteration [9]. In this article, we will extend
the algorithm of Dai and Cheng [12] to the 2D/3D stationary in-
compressible MHD model. It can be cast in the framework of Dai and
Cheng. However, this paper is different from [12] because of the dif-
ferent and more complicated equations. Three fields in the MHD
equations which are interactional and interdependent make scaling
between the coarse and fine grids harder to establish than that of the
Navier-Stokes equations in [12]. The remainder of this article is struc-
tured as follows: in Section 2, we introduce some basic notations and
results of problem (1)–(2), and recall stability and convergence of
standard finite element for the MHD equations. In next section, we
present a new two-level method for MHD equations, and give stability
and error estimates. In Section 4, some numerical tests confirm the
effectiveness of our algorithm.

2. Preliminaries

For a positive integer m, we denote by Hm(Ω) the Hilbert space of
L2(Ω) functions whose distributional derivatives up to order m are in
L2(Ω). The space H0

m(Ω) consists of Hm(Ω) functions with vanishing
trace up to order m− 1, and L02(Ω) consists of square integrable
functions with vanishing mean. The norm of Hm(Ω) is denoted by ∥ ⋅ ∥m,
and the L2(Ω) norm and inner product are given by ∥ ⋅ ∥m and (⋅, ⋅),
respectively.

Further, we set the shorthand notation
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For convenience, we set the product space W0n= X×W endowed
with the usual norm ∥(v,Ψ)∥1, where ∥(v,Ψ)∥i=(∥v∥i2+ ∥Ψ∥i

2)1/2 for
all v∈Hi(Ω)d ∩ X, Ψ∈Hi(Ω)d ∩W, i=0,1,2. And define the dual space
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where 〈⋅, ⋅〉 denotes duality product between the function space X and
its dual.

Multiplying (1) by appropriate test functions and integrating (by
parts) over the domain Ω in the usual way, we obtain the variational
formulation of the MHD system (1), i.e., find ((u,B),p)∈W0n×M such
that for all ((v,Ψ),q)∈W0n×M,
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It is easy to verify that following properties hold [10,16,22]: for all
(u,B), (w,Φ), (v,Ψ)∈W0n,

≥A w w ν w(( , Φ), ( , Φ)) ( , Φ) ,0 1
2 (4)

=A u B w w(( , ), ( , Φ), ( , Φ)) 0,1 (5)
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where ν= min {Re
−1,SC1Rm

−1}, =N C S2 max{1, 2 },0
2 ε > 0 is ar-

bitrarily small for d=2 and =ε 1
2 for d=3, and C (with or without a

subscript) denotes a generic positive constant, which is independent of
the mesh size, but may depend on Ω and other parameters introduced in
this paper.

Further, we recall the following existence and uniqueness of solu-
tion of (3) in [11,16]:

Theorem 2.1. The problem (3) exists at least a solution pair
((u,B),p)∈W0n×M which satisfies

≤ −ν u B F‖( , )‖ ,1 1 (8)
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Moreover, if Re, Rmand S satisfy the

following uniqueness condition:

< = <−σ N F
ν

0 1,1
2 (9)

then the solution pair ((u,B),p) of problem (3) is unique.

Theorem 2.2. [11] Suppose that (8) and f, g∈ L2(Ω)dare valid, then
solution ((u,B),p) of the problem (3) satisfies the following regularity

+ ≤ν u B p C F‖( , )‖ .2 1 0 (10)

Next, we recall Galerkin finite element method for stationary in-
compressible MHD problem. Let μ (μ= h or H with h≪H) be a real
positive parameter, and = ∪ =⊂K K K{ : Ω}μ K Ω be a quasi-uniform par-
tition of Ω into triangles for d=2 or tetrahedra for d=3. Based on the
regular partition Kμ, we consider the finite element space pair
(Xμ,Wμ,Mμ)⊂ (X,W,M) as follow:
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b

μ μ K μ1,
0

1

̂b is a bubble function, and P1(K) denotes the space of polynomials
on K of degree less than or equal to 1. Let W0n

μ= Xμ×Wμ. Then
W0n

μ×Mμ satisfies the following properties (see [11,18]):
(A1). There exists a constant β > 0 (depending only on Ω) such that
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