Accepted Manuscript

Characterization of focal EEG signals: A review

U. Rajendra Acharya, Yuki Hagiwara, Sunny Nitin Deshpande,

S. Suren, Joel En Wei Koh, Shu Lih Oh, N. Arunkumar, Edward

J. Ciaccio, Choo Min Lim

PII: S0167-739X(18)31881-8

DOI: https://doi.org/10.1016/j.future.2018.08.044

Reference: FUTURE 4428

To appear in: Future Generation Computer Systems

Received date: 3 August 2018 Accepted date: 25 August 2018

Please cite this article as:, Characterization of focal EEG signals: A review, *Future Generation Computer Systems* (2018), https://doi.org/10.1016/j.future.2018.08.044

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Characterization of Focal EEG Signals: A Review

U Rajendra Acharya^{1,2,3,*}, Yuki Hagiwara¹, Sunny Nitin Deshpande¹, S Suren¹, Joel En Wei Koh¹, Shu Lih Oh¹, N Arunkumar⁴, Edward J Ciaccio⁵, Choo Min Lim¹

- ¹ Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore.
- ² Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore.
 - ³ School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia.
 - ⁴ Department of Electronics and Instrumentation, SASTRA University, Thanjavur, India. ⁵ Department of Medicine, Columbia University, New York, USA.

*Corresponding Author:

Postal Address: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489.

Telephone: +65 6460 6135; Email Address: aru@np.edu.sg

ABSTRACT

Epilepsy is a common neurological condition that can occur in anyone at any age. Electroencephalogram (EEG) signals of non-focal (NF) and focal (F) types contain brain activity information that can be used to identify areas affected by seizures. Generally, F EEG signals are recorded from the epileptic part of the brain, while NF EEG signals are recorded from brain regions unaffected by epilepsy. It is essential to correctly detect F EEG signals, when and where they occur, as focal epilepsy can be successfully treated by surgical means. However, all EEG signals are complex and require highly trained personnel for right interpretation. To overcome the associated challenges, in this study a computer-aided detection (CAD) system to aid in the detection of F EEG signals has been developed, and the performance of nonlinear features for differentiating F and NF EEG signals is compared. Moreover, it is noted that nonlinear features can effectively capture concealed patterns and rhythms contained in the EEG signals. Overall, it was found that the CAD system will be useful to clinicians in providing an accurate and objective paradigm for localization of the epileptogenic area.

Keywords – Computer-aided detection system; electroencephalogram signals; epilepsy; focal; non-focal.

Download English Version:

https://daneshyari.com/en/article/11030120

Download Persian Version:

https://daneshyari.com/article/11030120

<u>Daneshyari.com</u>