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A B S T R A C T

Exposure to fine particulate matter (PM2.5) has been associated with a wide range of negative health outcomes.
The overwhelming majority of the epidemiological studies that helped establish such associations was conducted
in regions with sufficient ground observations and other supporting data, i.e., the data-rich regions. However, air
pollution health effects research in the data-poor regions, where pollution levels are often the highest, is still
very limited due to the lack of high-quality exposure estimates. To improve our understanding of the desired
input datasets for the application of satellite-based PM2.5 exposure models in data-poor areas, we applied a
Bayesian ensemble model in the southeast U.S. that was selected as a representative data-rich region. We de-
signed four groups of sensitivity tests to simulate various data-poor scenarios. The factors considered that would
influence the model performance included the temporal sampling frequency of the monitors, the number of
ground monitors, the accuracy of the chemical transport model simulation of PM2.5 concentrations, and different
combinations of the additional predictors. While our full model achieved a 10-fold cross-validated (CV) R2 of
0.82, we found that when reducing the sampling frequency from the current 1-in-3 day to 1-in-9 day, the CV R2

decreased to 0.58, and the predictions could not capture the daily variations of PM2.5. Half of the current stations
(i.e., 30 monitors) could still support a robust model with a CV R2 of 0.79. With 20 monitors, the CV R2 de-
creased from 0.71 to 0.55 when 100% additional random errors were added to the original CMAQ simulations.
However, with a sufficient number of ground monitors (e.g., 30 monitors), our Bayesian ensemble model had the
ability to tolerate CMAQ errors with only a slight decrease in CV R2 (from 0.79 to 0.75). With fewer than 15
monitors, our full model collapsed and failed to fit any covariates, while the models with only time-varying
variables could still converge even with only five monitors left. A model without the land use parameters lacked
fine spatial details in the prediction maps, but could still capture the daily variability of PM2.5 (CV R2≥ 0.67)
and might support a study of the acute health effects of PM2.5 exposure.

1. Introduction

Exposure to fine particulate matter with aerodynamic diameters of
2.5 μm or less (PM2.5) has been associated with various adverse health
outcomes, including cardiovascular and respiratory diseases, lung
cancer, and premature death in numerous epidemiologic studies
worldwide (Pope and Dockery, 2006; Brook et al., 2010; Turner et al.,
2011; Raaschou-Nielsen et al., 2013). However, the overwhelming
majority of these studies were conducted in the developed countries
with sufficient ground PM2.5 monitors and high-quality supporting in-
formation to provide exposure estimates, i.e., the data-rich regions.
According to the Global Burden of Disease study, nearly 87% of the
world's population lived in areas exceeding the World Health Organi-
zation Air Quality Guideline of 10 μg/m3 PM2.5 at the annual level, and

high PM2.5 levels were commonly found in developing countries
(Brauer et al., 2016). Assessing the disease burden of PM2.5 is still
difficult in these polluted regions in the world (Tonne, 2017), mainly
due to the lack of high-resolution PM2.5 exposure estimates (i.e., the
data-poor regions).

In the past decade, satellite-based aerosol optical depth (AOD) has
become a valuable information source to extend the spatial and tem-
poral coverage of PM2.5 ground monitoring networks (Wang and
Christopher, 2003; Engel-Cox et al., 2004; Liu et al., 2004; Van
Donkelaar et al., 2010; Geng et al., 2015; Lee et al., 2016). Various
empirical statistical models have been proposed to estimate daily to
annual mean PM2.5 concentrations at various spatial resolutions (Hu
et al., 2014a; Kloog et al., 2014; Di et al., 2016; Zheng et al., 2016; Hu
et al., 2017). Because of the complex relationship between satellite-

https://doi.org/10.1016/j.envint.2018.09.051
Received 27 July 2018; Received in revised form 26 September 2018; Accepted 26 September 2018

⁎ Corresponding author.
E-mail address: yang.liu@emory.edu (Y. Liu).

Environment International 121 (2018) 550–560

0160-4120/ © 2018 Published by Elsevier Ltd.

T

http://www.sciencedirect.com/science/journal/01604120
https://www.elsevier.com/locate/envint
https://doi.org/10.1016/j.envint.2018.09.051
https://doi.org/10.1016/j.envint.2018.09.051
mailto:yang.liu@emory.edu
https://doi.org/10.1016/j.envint.2018.09.051
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envint.2018.09.051&domain=pdf


retrieved AOD and ground PM2.5 measurements (Hoff and Christopher,
2009), additional factors such as meteorological fields, land use vari-
ables and other satellite data were incorporated in the statistical models
to better resolve the AOD-PM2.5 relationship (Kloog et al., 2012; Hu
et al., 2014b; Just et al., 2015). For example, in a national-scale geo-
graphically weighted regression model over China (Ma et al., 2014), the
prediction accuracy was improved when including meteorological and
land use data in the model (cross-validated R2 from 0.52 to 0.64). Re-
cently, statistical models also attempted to integrate chemical transport
model (CTM)-simulated PM2.5 concentrations to fill the data gaps left
by missing satellite AOD, despite their higher absolute prediction errors
(Friberg et al., 2016; Xiao et al., 2017; Geng et al., 2018). However,
CTM-simulated PM2.5 can have different uncertainty levels in different
regions. This is because the limited activity and emission factor data
and empirical choices of spatial proxies could contribute more biases in
the estimation of the gridded emissions in developing countries (Zhang
et al., 2009; Geng et al., 2017). How the errors in the CTM PM2.5 affect
the performance of the statistical models is an important yet poorly
studied issue.

Since the development of statistical models depends on ground
PM2.5 observations, many studies (Liu et al., 2009; Chang et al., 2014;
Hu et al., 2014a) have estimated PM2.5 exposure data in the U.S. where
~1600 monitoring stations routinely make PM2.5 measurements daily,
1-in-3 day, or 1-in-6 day since 2000. There is an increasing body of
literatures in China (Ma et al., 2016; Zheng et al., 2016) on the esti-
mation of satellite-based PM2.5 concentrations after 2013, when China
established its national PM2.5 monitoring network. There are also stu-
dies in southern Ontario (Tian and Chen, 2010) and the Mexico City
(Just et al., 2015), etc. These studies have shown good performance in
their statistical models and provided useful datasets for the following
epidemiological studies (Liu et al., 2016; Di et al., 2017). Despite the
rapid development of this emerging research field and strong desire to
apply these new exposure modeling techniques in data-poor regions,
developing a high-performance PM2.5 statistical model for air quality
management and health impact assessment requires a thorough un-
derstanding about the impacts of the availability of ground PM2.5 ob-
servations and other supporting information, which may not be readily
available in a data-poor region.

To date, an important question remains to be answered: does a set of
minimum data requirements exist for developing a high-performance
PM2.5 model in an area with limited data and resources? For example,
how important is PM2.5 ground sampling frequency to the performance
of a satellite-driven PM2.5 model? Is the inclusion of meteorological or
land use parameter essential to model prediction power? How valuable
are CTM simulations to the predicted PM2.5 concentration surface? In
this study, we addressed this issue by examining the sensitivity of a
flexible satellite-based statistical model to its key input variables in-
cluding the spatial and temporal availability of ground PM2.5 observa-
tions, meteorological and land use parameters, and the quality of CTM
simulations. In addition, we considered the complexity of model
structure as well as the joint impacts of these factors. We used the
southeastern U.S. as a representative data-rich region and designed
multiple sets of sensitivity tests to simulate various data-poor scenarios.
It is our hope that the process demonstrated in this study could provide
a framework for evaluating the feasibility of building a high-perfor-
mance PM2.5 statistical model in a data-poor region.

2. Materials and methods

2.1. Datasets

The study domain is approximately 600× 550 km2 in the south-
eastern U.S., which covers part of Tennessee, North Carolina, South
Carolina, Alabama and Georgia (Fig. 1). This area has a changing ter-
rain from the Appalachian Mountains in the northeast to the Piedmont
in the middle, then the coastal plain in the south. The sizes of cities

range from the Atlanta Metropolitan area with over 5.5 million people,
to medium to small size cities and rural towns. More importantly, this
region has a relatively dense ground air quality monitoring network
with 60 stations, high-quality meteorological and land use data, and
well-developed CTM simulations, which could be used to simulate
various levels of data accessibility and quality in a wide range of data-
poor regions in the world.

Daily mean ground-level PM2.5 measurements for 2003–2005 using
federal reference method were obtained from the U.S. Environmental
Protection Agency's Air Quality System (https://www.epa.gov/
outdoor-air-quality-data/). The numbers of observations per year for
each monitor are shown in Fig. 1. These monitors had three different
sampling schemes: daily, 1-in-3 day, and 1-in-6 day. On average, there
were 115 observation days per year for each monitor, which was a
typical 1-in-3 day sampling schedule.

We utilized the satellite-based AOD data retrieved by the Multi-
angle Implementation of Atmospheric Correction (MAIAC) algorithm at
1 km spatial resolution (Lyapustin et al., 2011a; Lyapustin et al., 2011b)
based on the Moderate Resolution Imaging Spectroradiometer
(MODIS). MAIAC AOD from both Terra (overpass time at 10:30 am) and
Aqua (overpass time at 1:30 pm) satellite were merged to improve the
spatial coverage of AOD data.

PM2.5 simulations from the USEPA Models-3/Community Multiscale
Air Quality (CMAQ) model version 4.5 at a 12 km spatial resolution
(Byun and Schere, 2006) were also used in this study. Other variables
compiled in this study included: elevation at 30m spatial resolution
from the National Elevation Data set (NED, http://ned.usgs.gov), forest
cover at 30m spatial resolution from the 2001 National Land Cover
Database (NLCD, http://www.mrlc.gov), road lengths of limited access
highway extracted from ESRI StreetMap USA (Environmental Systems
Research Institute, Inc., Redland, CA), relative humidity (RH) and wind
speed data at ~13 km spatial resolution from the North American Land
Data Assimilation Systems, and the primary PM2.5 emissions from point
sources provided by the 2002 USEPA National Emissions Inventory.

All data were integrated into the 1 km MAIAC grid. CMAQ PM2.5

data and meteorological fields were matched to the centroid of each
grid using the nearest neighbor approach. Elevation and forest cover
data were averaged and road lengths were summed within the 1 km
MAIAC grid. Overall, we had 8722 records of paired data for
2003–2005 over the study domain.

2.2. Bayesian ensemble approach

In this work, we utilized a two-stage Bayesian ensemble approach to
estimate daily full-coverage PM2.5 concentrations and conducted sen-
sitivity tests to study the impact of the input dataset on the model's
performance. The Bayesian ensemble model is a modeling framework
that takes advantages of the satellite remote sensing, the ground mea-
surements and the CTM simulations. It had better performance than the
commonly used multi-stage statistical models (Murray et al., 2018),
especially in the mountainous regions (Geng et al., 2018). The details of
the Bayesian ensemble model are provided in Murray et al. (2018) and
a brief summary is presented below.

In the first stage, two statistical downscalers were involved. One
was to calibrate the spatially and temporally varying PM2.5-AOD re-
lationship, which was the AOD downscaler. The other was to calibrate
the CMAQ simulated PM2.5, which was the CMAQ downscaler. The
downscaler models could be written as below (Chang et al., 2014):

= + + +Y α β X γZ εst st st st st st (1)

where Yst was the PM2.5 measurement at monitor s on day t. Xst re-
presented the main predictor of the downscaler at monitor s on day t,
which were MAIAC AOD and CMAQ PM2.5 for the AOD and CMAQ
downscaler respectively. Zst were additional predictors including me-
teorological fields and land use variables. In our AOD downscaler, the Z
vector included RH, wind speed, elevation, forest cover, limited
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