Contents lists available at ScienceDirect

Steroids

journal homepage: www.elsevier.com/locate/steroids

Anti-inflammatory furostanol saponins from the rhizomes of *Smilax china* L Yang Xie^a, Deng Hu^a, Cheng Zhong^a, Kai-Fei Liu^a, En Fang^b, Ying-Jun Zhang^c, Chun Zhou^{a,*}, Li-Wen Tian^{a,*}

EROII

^a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China

^b Xianning Institute of Drug Supervision and Inspection, Xianning 437100, China

^c State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

ARTICLE INFO	A B S T R A C T					
Keywords:	- Seven new furostanol saponins (1–7), chongrenosides A-G, were isolated from the rhizomes of <i>Smilax china</i> L,					
Smilax china	together with nine known furostanol saponins (8-16). The structures of the new furostanol saponins (1-7) were					
Furostanol saponin	elucidated by extensive spectroscopic data analyses (1D and 2D NMR, HRESIMS) and chemical evidence.					
Anti-inflammatory activity	Compounds 1-6 and 8-16 were evaluated for TNF- α mRNA expression inhibitory activity on LPS induced					
	RAW264.7 cells. Of them, 1, 4, 6, and 11 inhibited the TNF- α mRNA expression by 88%, 87%, 67%, and 93%,					
	respectively, at the concentration of 10 µM.					

1. Introduction

The genus *Smilax* (Liliaceae family) comprises about 300 species of climbing flowering shrub. They are widely distributed in the warm areas of East Asia and North America [1]. It is recorded that 19 *Smilax* species are used as folk medicine to treat inflammatory disorders in China [2]. Previous chemical investigations and biological studies on the genus *Smilax* revealed that steroidal saponins are the characteristic constituents with a wide spectrum of biological activities, such as antifungal, anti-inflammatory, and cytotoxic activities [2].

The rhizome of *S. china* L, known as "Jin Gang Teng" in Chinese Pharmacopeia, has been extensively used to treat chronic pelvic inflammation [3]. In a previous study, 20 phenolic compounds were identified from the rhizomes of *S. china* [4]. In a continuous effort to find active anti-inflammatory compounds, reinvestigation on the rhizomes of *S. china* led to the isolation of seven new furostanol saponins (1–7), and nine known furostanol saponins (8–16). Their structures were determined by extensive spectroscopic data analyses and chemical method. The anti-inflammatory activities of these isolates were also reported.

2. Experimental procedures

2.1. General

Optical rotations were measured with an MCP-500 polarimeter (Anton Parr). IR spectra were recorded in KBr pellets with an IR

Affinity-1 spectrometer (Shimadzu). NMR spectra were acquired on an AV-400 spectrometer (Bruker) with TMS as the internal standard. ESI-MS-MS were made on AB Sciex API 4000 QTRAP. HRESIMS experiments were obtained on a Thermo Scientific Orbitrap Fusion Tribrid mass spectrometer. HPLC analysis was carried out on a Shimadzu Essentia LC-16 system equipped with a DAD detector and an analytical Maisch Reprosil C18 column (5 μ m, 4.6 \times 150 mm, i.d). Column Chromatography (CC) were performed using polyamide (80–100 mesh, Basf), silica gel (200–300 mesh, Qingdao Haiyang Chemical Co., Ltd). Sephadex LH-20 (25–100 μ m, GE healthcare), MCI gel CHP20P (stationary phase: polyacrylamide, Tosoh Co., Ltd), or ODS (stationary phase: C18, 40–63 μ m, Merck).

2.2. Plant material

The rhizomes of *S. china* L. were collected from Xianning City, Hubei Province, China, and identified by co-author, En Fang, from Xianning Institute of Drug Supervision and Inspection. A voucher specimen (NO. SMU-NPC-201601) has been deposited in the Natural Product Chemistry Lab, School of Pharmaceutical Sciences, Southern Medical University.

2.3. Extraction and isolation

Air-dried and powdered rhizomes (2.5 kg) were refluxed with MeOH (3 \times 5 L, each 2 h). The resulted solutions were combined and

* Corresponding authors.

E-mail addresses: zhouch@smu.edu.cn (C. Zhou), lwtian@smu.edu.cn (L.-W. Tian).

https://doi.org/10.1016/j.steroids.2018.09.011

Received 10 August 2018; Received in revised form 19 September 2018; Accepted 24 September 2018 Available online 29 September 2018

0039-128X/ © 2018 Elsevier Inc. All rights reserved.

Table 1
H NMR (400 MHz) spectroscopic data (J in Hz) for the aglycone moieties of 1–7 (pyridine- d_5).

Positions	1	2	3	4	5	6	7
1ax	0.98 m	0.99 m	0.97 m	0.98 m	0.99 m	0.99 m	0.96 m
1 eq	1.75 m	1.76 m	1.71 m	1.74 m	1.76 m	1.75 m	1.76 m
2ax	1.87 m	1.88 m	1.85 m	1.87 m	1.86 m	1.87 m	1.84 m
2 eq	2.09 m	2.10 m	2.08 m	2.08 m	2.11 m	2.09 m	2.07 m
3	3.89 m	3.89 m	3.89 m	3.96 m	3.89 m	3.90 m	3.87 m
4ax	2.73 t (12.3)	2.74 m	2.73 m	2.72 t (11.8)	2.73 m	2.73 m	2.72 m
4 eq	2.79 dd (4.1, 12.3)	2.81 m	2.78 m	2.79 dd (4.1 11.8)	2.83 m	2.81 m	2.80 m
6	5.33 br.d (4.9)	5.33 br. d (4.7)	5.35 br.d (4.2)	5.31 br.d (4.8)	5.33 br.d (4.9)	5.35 br.s	5.33 br.d (4.8)
7ax	1.48 m	1.48 m	1.50 m	1.45 m	1.46 m	1.45 m	1.48 m
7 eq	1.88 m	1.89 m	1.88 m	1.86 m	1.88 m	1.86 m	1.86 m
8	1.48 m	1.49 m	1.56 m	1.55 m	1.50 m	1.49 m	1.47 m
9	0.93 m	0.94 m	0.96 m	0.88 m	0.92 m	0.91 m	0.89 m
11ax	1.46 m	1.48 m	1.38 m	1.43 m	1.50 m	1.43 m	1.37 m
11 eq	1.46 m	1.48 m	1.53 m	1.43 m	1.50 m	1.47 m	1.44 m
12ax	0.98 m	0.95 m	1.39 m	1.06 m	1.20 m	1.19 m	1.18 m
12 eq	1.68 m	1.68 m	2.69 m	1.69 m	1.78 m	1.76 m	1.72 m
14	0.81 m	0.83 m	0.94 m	0.98 m	0.90 m	0.90 m	0.87 m
15ax	2.37 dd (13.4, 7.2)	2.38 m	2.46 m	1.93 m	4.31 m	4.35 m	1.50 m
15 ea	1.18 m	1.19 m	1.24 m	1.45 m	_	_	2.11 m
16	5.40 m	5.40 m	5.36 m	4.87 m	4.87 m	4.89 m	4.84 m
17	1.22 m	1.23 m	1.63 m	1.94 m	2.53 d (10.5)	2.55 d (10.5)	2.55 d (10.7)
18	0.78 s	0.80 s	1.21 s	0.85 s	0.83 s	0.74 s	1.04 s
19	1.06 s	1.08 s	1.08 s	1.04 s	1.08 s	1.09 s	0.69 s
20a	1.35 m	1.37 m	4.48 m	2.41 m	_	_	_
20b	1.51 m	1.54 m	_	_	_	-	_
21	0.91 t (7.2)	0.91 t (7.4)	1.46 d (5.9)	1.29 d (7.1)	1.79 s	1.80 m	2.13 s
23a	2.47 m	2.48 m	2.45 m	2.11 m.	1.56 m	1.51 m	_
23b	2.47 m	2.48 m	2.45 m	2.47 m	2.16 m	2.12 m	-
24a	1.61 m	1.64 m	1.63 m	1.72 m	1.63 m	1.90 m	2.66 m
24b	2.02 m	2.01 m	2.02 m	1.94 m	2.31 m	2.09 m	3.07 m
25	1.94 m	1.95 m	2.00 m	1.98 m	2.33 m	2.24 m	2.69 m
26a	3.94 dd (9.5, 6.2)	3.98 m	3.98 m	3.97 m	4.13 m	4.17 m	4.01 m
26b	3.56 dd (9.5, 5.9)	3.50 dd (9.3, 6.7)	3.50 dd (9.5, 5.9)	3.63 m	3.55 m	3.59 m	3.58 m
27	0.96 d (6.2)	0.99 d (6.6)	0.97 d (6.3)	1.04 d (5.4)	1.13 d (6.3)	1.18 d (6.6)	1.04 d (6.0)
15a	-	-	-	-	3.73 m: 3.42 m	3.68 m: 3.39 m	_
15b	-	_	_	-	1.60 m	1.61 m	_
15c	_	_	_	-	1.45 m	1.48 m	_
15d	-	_	-	_	0.90 t (7.4)	0.90 t (7.4)	-

concentrated to give crude extract (490 g). The crude extracts were suspended in H₂O (2L), and partitioned with EtOAc ($6 \times 3L$) and n-BuOH (6 \times 3 L), successively. The *n*-BuOH soluble fraction (175 g) was subjected to CC over a polyamide column (9.0 \times 25.0 cm) eluting with 20%, 40%, and 60% MeOH/H2O (1L for each gradient), MCI CHP20P (MeOH/H₂O, 40%-80%, 200 mL for each gradient), and Toyopearl HW40F (MeOH/H2O, 10%-60%, 200 mL for each gradient) to afford total steroidal saponin fraction (26.0 g). The total steroidal saponin fraction was chromatographed over silica gel column (CHCl₃:MeOH:H₂O, 8:2:0.5-6:4:1) to yield two fractions A-B. Fr. A (6.0 g) was repeatedly subjected to CC over silica gel (CHCl₃:MeOH:H₂O, 7:3:1-5:4:1) and ODS (MeOH/H₂O, 40%-80%) to yield compounds 2 (11 mg), 3 (27 mg), 5 (60 mg), 6 (23 mg), 7 (61 mg) and 14 (16 mg). Fr. B (4.4 g) was subjected to ODS CC (MeOH/H₂O, 40%-80%) to yield four sub-fractions (Fr. B1-B4). Fr. B1 (0.5 g) was purified over ODS (MeOH-H₂O, 40%-80%) to give compounds 8 (41 mg), 12 (21 mg), and 15 (70 mg). Fr. B2 (2.0 g) was applied to a silica gel CC eluted with CHCl3-MeOH-H2O (7:3:1-6:4:1), and ODS CC (MeOH/H₂O, 50%-100%) to yield compounds 9 (60 mg), 10 (23 mg), and 11 (24 mg). Fr. B3 (0.7 g) was chromatographed over a silica gel column (EtOAc:EtOH:H2O, 8.8:1.2:1-8.3:1.7:1), and ODS (MeOH-H2O, 60%-100%) to yield compound 16 (13 mg). Likewise, Fr. B4 (1.0 g) was purified over silica gel (EtOAc:EtOH:H2O, 8.7:1.3:1-8.2:1.8:1), and ODS (MeOH/H₂O, 40%-60%) to yield compounds 1 (20 mg), 4 (13 mg), and 13 (23 mg).

2.3.1. Chongrenoside A (1)

White amorphous powder; [α] -34.5 (*c* 0.10, MeOH); IR(KBr) ν_{max} : 3363, 2933, 2960, 1750, 1500, 1040 cm⁻¹; ¹H NMR (pyridine- d_5 , 400 MHz), see Tables 1 and 2; ¹³C NMR (pyridine- d_5 , 100 MHz) see Tables 3 and 4; ESI-MS-MS: m/z 1047.6 [M-H]⁻, 901.6 [M-H-146]⁻, 755.0 [M-H-146 \times 2]⁻; HRESIMS: m/z 1047.5375 [M-H]⁻ (calcd for C₅₁H₈₃O₂₂, 1047.5371).

2.3.2. Chongrenoside B (2)

White amorphous powder; $[\alpha] - 55.7$ (*c* 0.21, MeOH); IR(KBr) ν_{max} : 3356, 2932, 2852, 1730, 1379, 1020 cm⁻¹; ¹H NMR (pyridine- d_5 , 400 MHz), see Tables 1 and 2; ¹³C NMR (pyridine- d_5 , 100 MHz) see Tables 3 and 4; ESI-MS-MS: m/z 1193.8 $[M-H]^-$, 1047.8 $[M-H-146]^-$, 901.4 $[M-H-146 \times 2]^-$, 755.1 $[M-H-146 \times 3]^-$; HRESIMS: m/z 1193.5936 $[M-H]^-$ (calcd for C₅₇H₉₃O₂₆, 1193.5949).

2.3.3. Chongrenoside C (3)

White amorphous powder; $[\alpha] - 68.0$ (*c* 0.17, MeOH); IR(KBr) ν_{max} : 3362, 2932, 1714, 1379, 1018 cm⁻¹; ¹H NMR (pyridine- d_5 , 400 MHz), see Tables 1 and 2; ¹³C NMR (pyridine- d_5 , 100 MHz) see Tables 3 and 4; HRESIMS: m/z 1209.5919 [M-H]⁻ (calcd for C₅₇H₉₃O₂₇, 1209.5904).

2.3.4. Chongrenoside D (4)

White amorphous powder; [α] -67.9 (MeOH, c 0.1); IR(KBr) ν_{max} : 3682, 3363, 2960, 2933, 1130, 1039 cm⁻¹; (-)-ESIMS: m/z 1064

Download English Version:

https://daneshyari.com/en/article/11030871

Download Persian Version:

https://daneshyari.com/article/11030871

Daneshyari.com