Contents lists available at ScienceDirect

Solar Energy

journal homepage: www.elsevier.com/locate/solener

Nowcasting, predictive control, and feedback control for temperature regulation in a novel hybrid solar-electric reactor for continuous solarthermal chemical processing

Scott C. Rowe^{a,*}, Illias Hischier^b, Aaron W. Palumbo^c, Boris A. Chubukov^c, Mark A. Wallace^d, Rachel Viger^d, Allan Lewandowski^e, David E. Clough^d, Alan W. Weimer^{f,*}

^a Florida State University of Florida A&M University College of Engineering, 2525 Pottsdamer St, Tallahassee, FL 32310, United States

^b ETH Zurich, Department of Architecture, Building HIL, Stefano-Franscini-Platz 5, 8093 Zurich Hoenggerberg, Switzerland

^c Big Blue Technologies LLC, 6710 W 112TH PL, Westminster, CO 80020, United States

^d University of Colorado, 3415 Colorado Ave, Boulder, CO 80303, United States

^e Allan Lewandowski Solar Consulting, LLC, 505 Madison Street, Denver, CO 80206, United States

^f 3415 Colorado Ave, UCB Boulder, CO 80303, United States

ARTICLE INFO

Keywords: Solar-thermal Concentrated solar power Model predictive control

ABSTRACT

A novel 15 kW reactor for the hybridization of concentrated solar and conventional electric heat was fabricated for renewable and continuous chemical processing at temperatures up to 1700 °C. Solar-electric controllers based on feedback or predictive linear models were used to regulate the device at 925 °C for the production of syngas via the gasification of carbon. The system was challenged with cloud transients programmed on a 45 kW high-flux solar simulator that approximated weather observed in the San Luis Valley (Colorado, USA). In experiment it was found that model predictive control with a 1 min ahead nowcast of incipient clouding best regulated solar-electric reactor temperatures, potentially averting thermal fatigue. Upon clouding, model predictive control with a nowcast yielded temperature disturbances of ± 10 °C, whereas feedback control alone featured ± 25 °C excursions. Overall, the performance of model predictive control with a nowcast was 75% better than feedback as indicated by the integral squared error of temperature was robust to forecast amplitude inaccuracy, temporal forecast inaccuracy wholly negated the benefits of predictive control.

1. Introduction

Concentrated solar power harnesses energy with mirrored heliostats, dishes, or troughs – optics that heat a boiler, receiver, or reactor with focused sunlight (Behar et al., 2013; Roeb et al., 2011; Romero and Steinfeld, 2012). Commercially this approach is used to warm a working fluid to high temperature, where the fluid then directly or indirectly drives electrical turbines (González-Roubaud et al., 2017). Currently, state-of-art concentrated solar power plants operate at 565 °C with hot fluid storage for continued energy dispatch during inclement weather (Dunn et al., 2012). These facilities avert weather-induced thermal fatigue largely by manipulating receiver fluid flows, either by slowing flows, by redistributing flows, or by recycling hot fluid during clouding (Camacho et al., 2014; Kesselring and Selvage, 2013; Powell and Edgar, 2011). However, despite the availability of an energy reservoir to mitigate cloud transients thermal shock remains an important consideration in the design (Augsburger and Favrat, 2013; Du et al., 2016; Rodríguez-Sánchez et al., 2014; Terdalkar et al., 2015; Zheng et al., 2017), operation (Ashley et al., 2017; Papaelias et al., 2016; Relloso and García, 2015; Schellinger et al., 1993), and even economic simulation of concentrated solar plants (Feldhoff and Hirsch, 2017). At the higher operating temperatures proposed for new concentrated solar applications (> 750 °C) weather transients likely pose a heightened challenge to solar receiver lifespan and plant feasibility (Besarati and Goswami, 2016; Murray et al., 1995; Roeb et al., 2011; Romero and Steinfeld, 2012).

Commodities and fuels production feature the highest planned solar-thermal temperatures and likely represent the most extreme solar controls challenge. Specifically, direct sunlight has been proposed and tested for hydrogen fuels production at $1400 + ^{\circ}C$ (Furler et al., 2012; Roeb et al., 2011), biomass gasification for liquid fuels at $750 + ^{\circ}C$ (Lichty et al., 2010; Romero and Steinfeld, 2012), and metallurgical

* Corresponding authors.

https://doi.org/10.1016/j.solener.2018.09.005

E-mail addresses: scottrowes@utexas.edu, scottrowes@eng.famu.fsu.edu (S.C. Rowe), alan.weimer@colorado.edu (A.W. Weimer).

Received 2 July 2018; Received in revised form 20 August 2018; Accepted 3 September 2018 0038-092X/ © 2018 Elsevier Ltd. All rights reserved.

Α В

 B_d с С C_p d_n

f F L

р Р Р r

Nomen	clature		time index n (electric %)
Nomen		II	heat transfer resistance $W/(Km^2)$
Fnolish	symbols	$\frac{\partial}{r}$	state vector at time index $n \ge 1$
Litguart	511000	v	process variable deviation from setpoint at time index n
Α	state transition matrix	yn	(Celsius)
R	process transition matrix	V	vector of model predicted process setpoint departures
B.	disturbance transition matrix	$V^T - [V_n]$	$v_{n+1} \cdots v_{n+n}]^T$
C C	process horizon 24 sample intervals (12 min)	7 — [3 <i>n</i>	axial coordinate
C C	output transition matrix	2	
C	heat capacity I/(mol K)	Greek sva	nhols
d_p	disturbance deviation from the nominal disturbance at	GIECK Syl	1000
un	time index n (solar %)	٨d	velocity formulation of the disturbance variable
P.,	setpoint minus process variable at time index n (Celsius)	Δu_n	d - d
E	absolute electrical power W	ΔD	velocity mode disturbance forecast used in con-
f	forecast horizon varied		trol $\Delta D^T = [\Delta d_n, \Delta d_{n+1}, \cdots, \Delta d_{n+\ell}]^T$
, F	view factor, unitless	ΛH ^o	heat of reaction kI/mol
L	Luenberger gain	Δ11	velocity formulation of the manipulated variable
k	thermal conductivity, W/(K m)	Δun	$u_{\rm r} = u_{\rm r}$, aka control move
K	transfer function process gain	ΔU	input control actions. $\Delta U^T = [\Delta u_n \ \Delta u_{n+1} \ \cdots \ \Delta u_{n+c}]^T$.
K ₄	solar disturbance gain. °C/%	control n	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
K _n	electric process gain, °C/%	Δt	control sampling interval, 25 sec for feedback, 30 sec for
H	process Teoplitz matrix		model predictive control
n	time index. integer	$\Delta \vec{x}_n$	velocity formulation of the state $\vec{x}_n - \vec{x}_{n-1}$
N	local flux. W/m^2	E.	effective grev body emissivity, unitless
Nconv	convective contribution to local flux (cavity only), W/m^2	ρ	density, mol/m ³
Nexcha	radiative contribution to local flux (cavity only), W/m^2	θ	angular coordinate
N _r	local flux coincident with radial direction, W/m^2	θ	observability matrix
N_{π}	local flux coincident with axial direction, W/m^2	τ	dominant reactor temperature time constant, minutes
$\tilde{N_{ heta}}$	local flux coincident with angular direction, W/m^2	τ_1	process time constant for distributed control system
Nelc	electric contribution to local flux (cavity only), W/m^2	-	transfer functions, seconds
Nrad	radiative contribution to local flux (cavity only), W/m^2	τ_2	process time constant for 2nd order distributed control
p	prediction horizon, 120 sample intervals (60 min)	-	system transfer functions, seconds
P	absolute high-flux solar simulator power, W	$ au_D$	derivative time constant, zero throughout
Р	forecast Teoplitz matrix	τ_I	integral time constant, minutes or seconds
r	radial coordinate	τ_p	total process time constant of distributed feedback con-
R	move suppression matrix (coefficient)		trollers, minutes or seconds
t	time	ξ	fractional solar into a given cavity finite volume element,

unitless

ment, unitless

t Т temperature, K Tambient mean air temperature, 293 K T_c mean water coolant temperature, 288 K un manipulated variable deviation from nominal input at

extraction at 1000+ °C (Murray et al., 1995; Wieckert et al., 2007).

Previously, pilot solar facilities running at these elevated temperatures

have served as platforms for the study of thermal shock (Douale et al.,

1999; Glaser, 1958; Riskiev and Suleimanov, 1991), whereas sustained

perature solar operation despite weather, studies that are summarized

Different strategies have been explored to regulate higher tem-

plant operation relies on rejecting thermal transients.

in Table 1. Several techniques involve oversizing the solar field and manipulating heliostats and/or blocking light to modulate cloud disturbances (Beschi et al., 2013; Najafabadi and Ozalp, 2018; Roca et al., 2013, 2016). This direct use of solar collection equipment may rapidly reject temperature transients. However, the solar field is already 40% of facility cost (Bhargav et al., 2014), can be only 66% efficient (Bradshaw et al., 2002; Vogel and Kalb, 2010), and parasitically consumes 3.8% of

fractional electric into a given cavity finite volume ele-

Table 1

prior studies on the control of solar heat in commodities and fuels production processes. (PI = proportional integral control, GPC = generalized predictive control, LQG = linear quadratic Gaussian, LQR = linear quadratic regulator, MPC = model predictive control, NMPC = nonlinear model predictive control, FSF = full state feedback).

ζ

Process	Control simulations	Control experiments	Manipulated variable	Feed forward	Forecast	Disturbances (appromixate)	Controller	Reference
Gasification Gasification Gasification H ₂ looping H ₂ looping Sintering Superheating Superheating	· · · · · · · · · · · · · · · · · · ·	1 1 1 1	Electricity Flowrate(s) Flowrate(s) Heliostats Heliostats Shutters Shutters Flowrate(s)	· · · · · · · · · · · · · · · · · · ·	1	100% 100% 20% 25% 100% 20% 100%	PI, MPC LQG/LQR PI PI, MPC PI PI GPC, PI NMPC, PI FSF	This study Petrasch et al. Muroyama et al. Saade et al. Roca et al., 2013 Roca et al., 2016 Beschi et al. Najafabadi et al. Zapata.

Download English Version:

https://daneshyari.com/en/article/11031039

Download Persian Version:

https://daneshyari.com/article/11031039

Daneshyari.com