Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/0038092X)

Solar Energy

journal homepage: www.elsevier.com/locate/solener

Nowcasting, predictive control, and feedback control for temperature regulation in a novel hybrid solar-electric reactor for continuous solarthermal chemical processing

S[c](#page-0-3)ott C. Rowe $^{\rm a, *},$ $^{\rm a, *},$ $^{\rm a, *},$ Illias Hischier $^{\rm b}$ $^{\rm b}$ $^{\rm b}$, Aaron W. Palumbo $^{\rm c}$, Boris A. Chubukov $^{\rm c}$, Mark A. Wallace $^{\rm d}$ $^{\rm d}$ $^{\rm d}$, Rachel Viger^{[d](#page-0-4)}, Allan L[e](#page-0-5)wandowski^e, David E. Clough^d, Alan W. Weimer^{[f,](#page-0-6)}*

^a Florida State University of Florida A&M University College of Engineering, 2525 Pottsdamer St, Tallahassee, FL 32310, United States

^b ETH Zurich, Department of Architecture, Building HIL, Stefano-Franscini-Platz 5, 8093 Zurich Hoenggerberg, Switzerland

^c Big Blue Technologies LLC, 6710 W 112TH PL, Westminster, CO 80020, United States

^d University of Colorado, 3415 Colorado Ave, Boulder, CO 80303, United States

e Allan Lewandowski Solar Consulting, LLC, 505 Madison Street, Denver, CO 80206, United States

f 3415 Colorado Ave, UCB Boulder, CO 80303, United States

ARTICLE INFO

Keywords: Solar-thermal Concentrated solar power Model predictive control

ABSTRACT

A novel 15 kW reactor for the hybridization of concentrated solar and conventional electric heat was fabricated for renewable and continuous chemical processing at temperatures up to 1700 °C. Solar-electric controllers based on feedback or predictive linear models were used to regulate the device at 925 °C for the production of syngas via the gasification of carbon. The system was challenged with cloud transients programmed on a 45 kW highflux solar simulator that approximated weather observed in the San Luis Valley (Colorado, USA). In experiment it was found that model predictive control with a 1 min ahead nowcast of incipient clouding best regulated solarelectric reactor temperatures, potentially averting thermal fatigue. Upon clouding, model predictive control with a nowcast yielded temperature disturbances of \pm 10 °C, whereas feedback control alone featured \pm 25 °C excursions. Overall, the performance of model predictive control with a nowcast was 75% better than feedback as indicated by the integral squared error of temperature excursion residuals. The importance of nowcast accuracy was explored, and although the model-based controller was robust to forecast amplitude inaccuracy, temporal forecast inaccuracy wholly negated the benefits of predictive control.

1. Introduction

Concentrated solar power harnesses energy with mirrored heliostats, dishes, or troughs – optics that heat a boiler, receiver, or reactor with focused sunlight [\(Behar et al., 2013; Roeb et al., 2011; Romero and](#page--1-0) [Steinfeld, 2012](#page--1-0)). Commercially this approach is used to warm a working fluid to high temperature, where the fluid then directly or indirectly drives electrical turbines [\(González-Roubaud et al., 2017](#page--1-1)). Currently, state-of-art concentrated solar power plants operate at 565 °C with hot fluid storage for continued energy dispatch during inclement weather [\(Dunn et al., 2012\)](#page--1-2). These facilities avert weather-induced thermal fatigue largely by manipulating receiver fluid flows, either by slowing flows, by redistributing flows, or by recycling hot fluid during clouding ([Camacho et al., 2014; Kesselring and Selvage, 2013; Powell](#page--1-3) [and Edgar, 2011](#page--1-3)). However, despite the availability of an energy reservoir to mitigate cloud transients thermal shock remains an important

consideration in the design ([Augsburger and Favrat, 2013; Du et al.,](#page--1-4) [2016; Rodríguez-Sánchez et al., 2014; Terdalkar et al., 2015; Zheng](#page--1-4) [et al., 2017\)](#page--1-4), operation [\(Ashley et al., 2017; Papaelias et al., 2016;](#page--1-5) [Relloso and García, 2015; Schellinger et al., 1993\)](#page--1-5), and even economic simulation of concentrated solar plants (Feldhoff [and Hirsch, 2017\)](#page--1-6). At the higher operating temperatures proposed for new concentrated solar applications ($> 750^{\circ}$ C) weather transients likely pose a heightened challenge to solar receiver lifespan and plant feasibility [\(Besarati and](#page--1-7) [Goswami, 2016; Murray et al., 1995; Roeb et al., 2011; Romero and](#page--1-7) [Steinfeld, 2012\)](#page--1-7).

Commodities and fuels production feature the highest planned solar-thermal temperatures and likely represent the most extreme solar controls challenge. Specifically, direct sunlight has been proposed and tested for hydrogen fuels production at $1400 + \degree C$ [\(Furler et al., 2012;](#page--1-8) [Roeb et al., 2011\)](#page--1-8), biomass gasification for liquid fuels at $750 + \degree C$ ([Lichty et al., 2010; Romero and Steinfeld, 2012\)](#page--1-9), and metallurgical

⁎ Corresponding authors.

E-mail addresses: [scottrowes@utexas.edu,](mailto:scottrowes@utexas.edu) scottrowes@eng.famu.fsu.edu (S.C. Rowe), alan.weimer@colorado.edu (A.W. Weimer).

<https://doi.org/10.1016/j.solener.2018.09.005>

Received 2 July 2018; Received in revised form 20 August 2018; Accepted 3 September 2018 0038-092X/ © 2018 Elsevier Ltd. All rights reserved.

extraction at 1000+ °C [\(Murray et al., 1995; Wieckert et al., 2007](#page--1-10)). Previously, pilot solar facilities running at these elevated temperatures have served as platforms for the study of thermal shock [\(Douale et al.,](#page--1-11) [1999; Glaser, 1958; Riskiev and Suleimanov, 1991\)](#page--1-11), whereas sustained plant operation relies on rejecting thermal transients.

Different strategies have been explored to regulate higher temperature solar operation despite weather, studies that are summarized in [Table 1.](#page-1-0) Several techniques involve oversizing the solar field and manipulating heliostats and/or blocking light to modulate cloud disturbances ([Beschi et al., 2013; Najafabadi and Ozalp, 2018; Roca et al.,](#page--1-12) [2013, 2016](#page--1-12)). This direct use of solar collection equipment may rapidly reject temperature transients. However, the solar field is already 40% of facility cost ([Bhargav et al., 2014](#page--1-13)), can be only 66% efficient [\(Bradshaw](#page--1-14) [et al., 2002; Vogel and Kalb, 2010](#page--1-14)), and parasitically consumes 3.8% of

Table 1

prior studies on the control of solar heat in commodities and fuels production processes. (PI = proportional integral control, GPC = generalized predictive control, LQG = linear quadratic Gaussian, LQR = linear quadratic regulator, MPC = model predictive control, NMPC = nonlinear model predictive control, FSF = full state feedback).

Download English Version:

<https://daneshyari.com/en/article/11031039>

Download Persian Version:

<https://daneshyari.com/article/11031039>

[Daneshyari.com](https://daneshyari.com)