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a b s t r a c t

The apparent diffusion coefficient (ADC) is analyzed for the case of oscillating diffusion-sensitizing gra-
dients in the high-frequency regime. We provide a concise derivation of the analytical expression for
the ADC for an arbitrary number of gradient oscillations N and initial phase u. It is demonstrated that
an ultimate goal – to determine the surface-to-volume ratio (S/V) from MR measurements by using
oscillating gradients – can be achieved with cosine-type gradients (u = 0) for an arbitrary N. However,
to determine S/V employing gradients with u– 0 (including the sine-type gradients) and arbitrary N addi-
tionally requires prior knowledge of the time-dependent diffusion coefficient D(t). The latter is rarely
known a priori but can be estimated under certain limiting conditions: (i) in the short time regime, when
the total diffusion time of the measurements, t, is smaller than the characteristic diffusion time of the
microstructural system of interest, an analytical expression for D(t) is available (Mitra’s expression)
and this allows S/V to be determined in the short time regime with sine-type gradients; (ii) in the impor-
tant case of purely restricted diffusion, D(t)? 0 at sufficiently long time, the signal becomes independent
of u and behaves as for the cosine-type gradients, thus, allowing determination of S/V.

� 2018 Elsevier Inc. All rights reserved.

1. Introduction

Diffusion MRI studies of short length microstructural scales
provide a powerful tool for examination of porous media and bio-
logical systems. However, such measurements are predicated on
acquiring an MR ‘‘diffusion signal” having sufficient dynamic range
in the short diffusion-time regime, i.e., sufficient signal-to-noise at
sufficiently high diffusion-encoding (i.e., high b-values). Achieving
high b-values in the short time regime is a challenging technical
problem. A promising approach to the short time limit is to apply
high frequency oscillating gradients (OG). Most often, the gradient
oscillation pattern is simply sinusoidal or cosinusoidal. Oscillating
gradient diffusion experiments are increasingly being used for
studying short length microstructural scales, e.g., [1–16]. In partic-
ular, OG are used for calculating the surface-to-volume ratio ðS=VÞ
from the measured apparent diffusion coefficient (ADC).

The ADC, herein identified by the symbol ~DðtÞ, is defined in the
standard way [17],

~DðtÞ ¼ �1
b
� ln SðtÞ

S0

� �
; ð1Þ

where SðtÞ is the MR signal at diffusion time t, S0 is the signal in the
absence of diffusion-sensitizing gradients and b is the b-value. In

general, the ADC, ~DðtÞ, depends not only on the diffusion time of
the measurements, t, but on the time evolution of the diffusion sen-
sitizing gradient as well. For experiments with gradients oscillating
at frequency x, t can be effectively substituted (at least, in some
cases) by the period of a single gradient oscillation T ¼ 2p=x. The
oscillation period T can, in principal, be chosen to be ‘‘short enough”
by using a high oscillation frequency. Likewise, the b-value is pro-
portional to the number of oscillations N and can, in principal, be
made ‘‘high enough” to achieve sufficiently high diffusion-
encoding. (As noted earlier, achieving such experimental conditions
in practice can be very challenging, a subject beyond the scope of
this manuscript.)

In a previous publication [18], one of us (AS) derived analytical
expressions for ~DðtÞ in the case of an oscillating diffusion-
sensitizing gradient,

gðtÞ ¼ g0 � cosðxt �uÞ; ð2Þ
as a function of x, the total number of oscillations N, and the initial
gradient phase u in the ‘‘high-frequency regime”, Eq. (3):

~Dðt ¼ 2pN=xÞ ¼ D0 � 1� cðu;NÞ
d

� S
V

� �
�
ffiffiffiffiffiffi
D0

x

r" #
;

x� t�1
D ¼ D0 � S

d V
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: ð3Þ

Here D0 is the free diffusion coefficient, (S=V) is the surface-to-
volume ratio of the microstructural system of interest, d is the
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system’s dimensionality, tD is the characteristic diffusion time, and
the coefficient cðu;NÞ is given by

cðu;NÞ

¼ 32pN3=2 sin2uþ 12pN � Cð2N1=2Þ þ 3ð3þ 4 sin2uÞ � Sð2N1=2Þ
6
ffiffiffi
2

p
pNð1þ 2 sin2uÞ

;

ð4Þ
where C(x) and S(x) are the Fresnel functions [19]. The particular
cases of the cosine- and sine-type gradients correspond to u ¼ 0
and u ¼ p=2, respectively. The limiting value of cð0;N ! 1Þ ¼
1=

ffiffiffi
2

p
coincides with the result obtained in [20] in the framework

of the frequency domain approach.
Note that, as per Eq. (3), the high frequency regime is defined as

x� t�1
D and tD is a function of D0, S=V , and d. Considering the dif-

fusion of water at 37 �C (D0 � 3 lm2=ms) in idealized spherical
volumes of radii 0.5, 1, 5, 10, and 50 mm, the characteristic diffusion
times are about 0:08;0:33;8:3;33; and 833 ms, respectively.
Accepting x � 10 � t�1

D as the lower limit to the high frequency
regime, then the high frequency regime is achieved when
f ¼ x=2p > 20000;5000;200;50; and 2 Hz, respectively.

The divergence of the coefficient cðu – 0;NÞ at large N imposes
a restriction on the oscillation number N, namely, Eqs. (3) and (4)

are valid only under the condition cðu– 0;NÞ=X1=2 � 1, where
X ¼ xtD is the dimensionless frequency. In particular, for any u
not too close to 0 (including the sine-type gradient), these equa-
tions are valid when the number of oscillations N does not exceed
the parameter X: N < X, or, put another way, when the total dura-
tion of the diffusion-sensitizing waveform t ¼ N � 2p=x is smaller
than the characteristic time tD. This brief Communication provides
a simple and straightforward derivation of the expression for the
ADC, ~DðtÞ, that is valid for an arbitrary relationship between the
parameters N and X. Further, it is shown that, under certain condi-
tions, measurement of ~DðtÞ, thus estimation of X and hence tD,
given knowledge of x, allows determination of S=V .

2. Derivation of ADC

In the Gaussian phase approximation, which is valid at suffi-
ciently low b-values, (e.g., [17,21]) the time-dependent ADC, ~DðtÞ,
can be expressed in terms of the mean square displacement

LðtÞ ¼ hðdxÞ2it [22]

b � ~DðtÞ ¼ � c2

2

Z t

0
ds1

Z s1

0
ds2 gðs1Þgðs2Þ � Lðs1 � s2Þ; ð5Þ

where t ¼ 2pN=x is the total time of the gradient waveform dura-
tion, c is the gyromagnetic ratio of the nuclide of interest, and b is
the b-value. For the oscillating gradient waveform in Eq. (2), the lat-
ter is given by [3]:

b ¼ N � b0 � ð1þ 2 sin2uÞ; b0 ¼ ðcg0Þ2 �
p
x3 : ð6Þ

Introducing a new variable s ¼ s1 � s2 in the internal integral
and changing the order of integration, Eq. (5) can be rewritten as

b � ~DðtÞ ¼ � c2

2

Z t

0
ds LðsÞ

Z t

s
ds1 gðs1Þ � gðs� s1Þ: ð7Þ

For the gradient waveform given in Eq. (2), the internal integral can
be readily calculated:

b � ~DðtÞ ¼ � ðcg0Þ2
4x

Z t

0
ds LðsÞ uðt; sÞ

uðt; sÞ ¼ x � ðt � sÞ � cosxs� cos 2u � sinxs:
ð8Þ

Integrating the integral in Eq. (8) by parts yields,

b � ~DðtÞ ¼ ðcg0Þ2
2x2 � sin2u � LðtÞ þ ðcg0Þ2

2x2 �
Z t

0
ds @LðsÞ

@s
wðt; sÞ

wðt; sÞ ¼ x � ðt � sÞ � sinxs� 2 sin2u � cosxs:
ð9Þ

Note that the quantity @LðsÞ=@s in the integrand has the meaning of
an instantaneous diffusion coefficient (i.e., the diffusion coefficient
determined at a given instant in ‘‘diffusion time”).

To proceed further requires specifying an expression for the
mean square displacement, or for the effective time-dependent dif-
fusion coefficient DðtÞ defined as

DðtÞ ¼ LðtÞ
2dt

: ð10Þ

In [18], we used the well-known short time expansion for DðtÞ
derived by Mitra [23]:

DðtÞ ¼ D0 � 1� 4
3p1=2 � ðt=tDÞ

1=2
� �

; t � tD: ð11Þ

Combining Eqs. (10) and (11) yields an expression for LðtÞ. Substi-
tuting this in both the LðtÞ terms in Eq. (9) and calculating the inte-
gral in the second term yields the previously obtained results as in
Eqs. (3) and (4).

Importantly, the divergence at large N (� N1=2) of the ADC in
this approximation comes from the first (integrated) term in Eq.
(9). The second (non-integrated) term remains finite: with N
increasing, it converges to its limiting value rather fast. Such a fast
convergence justifies using the short-time expansion of DðtÞ in this
term. Thus, substituting the expression for LðtÞ derived by combin-
ing Eqs. (10) and (11) only in the second term in Eq. (9) and inte-
grating yields the following expression for the ADC:

~DðtÞ ¼ 1

1þ 2 sin2u
�
(
½D0 þ 2 sin2u � DðtÞ�

�D0 � 4pN � Cð2N1=2Þ þ ð3þ 4 sin2uÞ � Sð2N1=2Þ
2pN � ð2XÞ1=2

)
: ð12Þ

We note that this result, which is valid without restriction on the
number of gradient oscillations N, can be also derived in the frame-
work of a less compact, alternative approach based on Fourier
domain analysis [24].

Eq. (12) relates the free diffusion coefficient D0, the effective dif-
fusion coefficient DðtÞ, the ADC, i.e., ~DðtÞ, and the parameter X.
Hence, in the general case (u – 0, arbitrary N), even with known
D0, Eq. (12) does not allow the estimation of X (and, consequently,
S/V) from MR measurements with oscillating gradients without
prior knowledge of DðtÞ, which is rarely known a priori but can
be estimated under certain limiting conditions.

3. Discussion

As the Fresnel functions tend to ½ at large arguments, the ADC
converges to

~DðtÞ ¼ D0

1þ 2 sin2u
� 1� 1

ð2XÞ1=2
 !

þ 2 sin2u
1þ 2 sin2u

� DðtÞ; N � 1:

ð13Þ
In any purely restricted geometry, at sufficiently long time,

t � tD, the mean squared displacement, L(t), becomes a constant
depending on system geometry, consequently the effective diffu-
sion coefficient DðtÞ ! 0 as [25]

DðtÞ 	 g � R2=t � 1=N; ð14Þ
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