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A B S T R A C T

We examine a hybrid multivariate regression technique to account for the spatial dependency in spectroscopic
data due to adjacent measurement locations in the same joint by combining dimension reduction methods and
linear mixed effects (LME) modeling. Spatial correlation is a common limitation (assumption of independence)
encountered in diagnostic applications involving adjacent measurement locations, such as mapping of tissue
properties, and can impede tissue evaluations. Near-infrared spectra were collected from equine joints (n¼ 5) and
corresponding biomechanical (n¼ 202), compositional (n¼ 530), and structural (n¼ 530) properties of cartilage
tissue were measured. Subsequently, hybrid regression models for estimating tissue properties from the spectral
data were developed in combination with principal component analysis (PCA-LME) scores and least absolute
shrinkage and selection operator (LASSO-LME). Performance comparison of PCA-LME and principal component
regression, and LASSO-LME and LASSO regression was conducted to evaluate the effects of spatial dependency. A
systematic improvement in calibration models’ correlation coefficients and a decrease in cross validation errors
were observed when accounting for spatial dependency. Our results indicate that accounting for spatial de-
pendency using a LME-based approach leads to more accurate prediction models.

1. Introduction

Articular cartilage, a connective tissue covering the ends of bones in a
joint, is susceptible to post-traumatic osteoarthritis (PTOA) due to focal
injuries caused by sudden excessive impact loading. The injury, although
initially localized, often spreads over time, resulting in altered functional
performance of the whole joint. Arthroscopic evaluation of tissue prop-
erties around the injury site and assessing the spread of the injury could
enable optimal surgical intervention, thereby minimizing the risk of
PTOA. Currently, in clinical arthroscopies [1], cartilage is assessed
visually through an endoscope and by palpating the tissue surface with a
metal hook [2]. This method is qualitative, unreliable, and poorly
reproducible [3,4], thus necessitating development of novel, quantita-
tive, robust, and reliable methods.

Non-destructive diagnostic tools, such as near-infrared (NIR) spec-
troscopy, have shown potential for arthroscopic characterization of
articular cartilage integrity [5]. NIR spectroscopy is a vibrational spec-
troscopic technique that has been utilized for spatial assessment of
cartilage biomechanical, compositional, and structural properties [6–8].
In these studies, multivariate regression was utilized to relate cartilage

NIR spectra with its tissue properties. However, conventional multivar-
iate regression methods, such as partial least squares (PLS), are based on
the underlying assumption of independent observations [9], whereas
biomedical characterization of tissue integrity, for example in arthros-
copy, often involves multiple measurement locations within close prox-
imity in the same joint. This grouping effect of samples introduces spatial
dependency and is likely to cause unreliable correlations if unaccounted
for in regression modeling [10,11].

Linear mixed effects (LME) regression and its input parameters,
namely fixed effects and random effects, can be designed for specific
datasets to account for grouping effects. Since only a limited number of
regressors (input variables) can be utilized in model creation using LME,
adaptation for a large set of variables, such as NIR spectra, requires
dimension reduction and/or variable selectionmethods. Hence, the input
variables need to be methodically selected by retaining only the most
important ones.

Application of dimension reduction methods, such as principal
component analysis (PCA) [12] via PCA score, and variable selection and
regularization methods like LASSO (least absolute shrinkage and selec-
tion operator) or L1 penalization [13], are effective approaches for
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reducing the high dimensionality of the data, such as NIR spectra. PCA
finds a set of projections that maximizes the variance in the original
dataset; hence, the data structure in the sample space is captured even in
the low dimensional subspaces. LASSO [14] is a regularization method
ideal for creating sparse models with high statistical accuracy in
predictions.

In this study, we propose a novel hybrid technique, which combines
dimension reduction methods and LME regression, to account for spatial
dependency in analysis of multivariate dataset. This is based on the hy-
pothesis that hybrid regression techniques can effectively model the
relationship between cartilage NIR spectra and its properties while ac-
counting for dependencies within the data.

2. Materials and methods

To account for spatial dependency in the dataset, the contributing
levels of dependency must first be identified. The levels of dependency
are defined by the experimental design and the scope of the application.
In our application on NIR-based characterization of cartilage, joint level
(measurement locations grouped in one complete joint) and bone level
(measurement locations grouped on one bone of a particular joint) were
identified (Fig. 1) as the two significant levels of dependency [15].
(Other application specific dependency levels can be accommodated in
the design matrix).

Subsequently, models were developed for relating the predictors (X)
to the response variables (y) while accounting for the identified de-
pendency levels (grouping effects). The adaptation of LME can be written
in the equation form:

yi ¼ Xβþ Zu1 þMu2 þ ε; (1)

where yi is an N(number of observations)-by-1 response vector of
reference values for the ith tissue property, X is an N-by-P (dimension
reduced NIR spectra) matrix of fixed effect regressors, β is a P-by-1 vector
of fixed effects coefficients, Z is an N-by-Q (grouping count) random
effects design matrix, M is an N-by-1 vector of additional random effects
vector, u1 and u2 are the mixed effects coefficients of sizes Q-by-1 and 1-
by-1 respectively, and ε is an N-by-1 vector representing the observation
error. Restricted maximum likelihood method was employed for esti-
mating LME [16].

2.1. Equine cartilage dataset

In this study, we utilized NIR spectral and tissue reference data from
equine cartilage measured in earlier studies [17,18]. In summary, met-
acarpophalangeal joints (n¼ 5) were acquired from a slaughterhouse,
and specific areas of interest (AI, n¼ 44) with cartilage lesions of varying
severity were selected by a veterinary surgeon. Subsequently, a
15� 15mm grid consisting of 25 measurement locations was marked on
each AI with a felt-tip pen (Fig. 1). The measurement locations (d¼2mm)
were equally spaced (interdistance¼ 2.5mm), and locations with highly

eroded cartilage were excluded, yielding a total of 869 measurement
points. NIR spectral measurements and thickness values were acquired
on each of the 869 measurements; however, biomechanical measure-
ments were performed only on 202 locations and compositional analysis
on 530 locations due to limitations set by sample preservation and ge-
ometry, respectively. NIR spectra were matched with corresponding
tissue property based on location during regression analysis.

2.2. NIR spectral measurements

The NIR spectroscopy instrumentation consisted of a halogen light
source (wavelength range: 360–2500 nm, power 5W, optical power:
239 μW in a dfiber¼ 600 μm, Avantes BW, Apeldoorn, Netherlands), and a
spectrometer (wavelength range: 200–1160 nm, Avantes BW, Apeldoorn,
Netherlands). A customized fiber optic probe (d¼ 5mm) consisting of
seven fibers (dfiber¼ 600 μm) within the central window (d¼ 2mm), the
six outer fibers for transmitting, and the central one for collecting the
reflectance spectrum, was utilized. Prior to sample measurements, dark
and reference spectra were acquired. Dark spectrum was acquired with
the spectrometer light source switched off in order to collect background
noise. With the light source switched on, reference spectrum was ac-
quired from a reflectance standard (Spectralon, SRS-99, Labsphere Inc.,
North Sutton, USA). The absorbance values of each sample spectra were
scaled as per Beer-Lambert's law using the dark and reference spectra. In
addition, signal acquisition time was optimized to maximize the signal to
noise ratio. The average of three spectral measurements that each con-
sisted of eight co-added spectral scans (teight scans¼ 720ms) was calcu-
lated. To preprocess the spectra (700–1050 nm), Savitzky-Golay
estimates of the second derivative using 41 points (or 25 nm) and a third-
order polynomial for the smoothing were computed. This preprocessing
not only removes baseline offset and dominant linear terms but also
enhances subtle absorption peaks.

2.3. Cartilage thickness and biomechanical measurements

Cartilage thickness at all NIRS measurement locations was deter-
mined using optical coherence tomography (OCT) via the Ilumien PCI
Optimization System, (St. Jude Medical, St. Paul, MN, USA) at an oper-
ating wavelength of 1305� 55 nm, axial resolution <20 μm, and lateral
resolution 25–60 μm. The samples were fully immersed in phosphate-
buffered saline (PBS) during the measurements.

Biomechanical indentation measurements were performed at 202
locations using a customized material testing device consisting of a load
cell (Sensotec, Columbus, OH, USA) with force resolution of 5mN, an
actuator (PM1A1798-1 A, Newport, Irvine, CA, USA) with displacement
resolution of 0.1 μm (PM500-1 A, Newport, Irvine, CA, USA), and a
plane-ended cylindrical indenter (d¼ 0.53mm). Equilibrium modulus
(Eeq) and dynamic modulus (Edyn) were calculated using an indentation
protocol detailed in Korhonen et al. [19] and Sarin et al. [17].

Fig. 1. Areas of interest (AI) marked (black squares, not to scale) on the articulating surfaces of equine metacarpophalangeal joint. In this study, grouping information
is on two dependency levels, i.e. joint level and bone level, which is held in Z (sample count� 5) and M (sample count� 1) design matrices.
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