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a b s t r a c t

Starting with approximate solutions of the equation −∆u = wu3 on the disk, with
zero boundary conditions, we prove that there exist true solutions nearby. One of
the challenges here lies in the fact that we need simultaneous and accurate control
of both the (inverse) Dirichlet Laplacean and nonlinearities. We achieve this with
the aid of a computer, using a Banach algebra of real analytic functions, based on
Zernike polynomials. Besides proving existence, and symmetry properties, we also
determine the Morse index of the solutions.
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1. Introduction

In this paper we consider semilinear elliptic equations of the form

− ∆u = wf ′(u) , u
⏐⏐
∂Ω

= 0 , (1.1)

where Ω is the unit disk in R2, w is a nonnegative function on Ω , and f ′ is the derivative of a regular function
f on R. In the cases considered here, w is always radial (invariant under rotations) and f ′(u) = u3. But it
will be clear from our description that the same methods work for other choices of w and f . In fact, similar
techniques should apply to other types of equations, and to other radially symmetric domains in R2 and R3.

Before giving more details, let us state a result that will help to set the stage.

Theorem 1.1. There exists a positive radial polynomial w on Ω , such that Eq. (1.1) with f ′(u) = u3 admits
a real analytic solution u = uw that has Morse index 2, with the property that |uw| is not invariant under
any nontrivial rotation.

The weight function w and the solution uw are shown in Fig. 1. A precise definition of w is given in [1].
We note that uw is symmetric under a reflection. This is one symmetry that solutions cannot avoid [17].
Our goal was to find an index-2 solution that has no other symmetries.
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Fig. 1. The weight function w and solution uw described in Theorem 1.1.

Fig. 2. The solutions u2, u4, and u6 described in Theorem 1.2.

Concerning the Morse index, recall that solutions of Eq. (1.1) are critical points of the functional J on
H1

0(Ω),

J(u) =
∫
Ω

[1
2

⏐⏐∇u⏐⏐2 − wf(u)
]
dxdy , (1.2)

assuming that f satisfies some growth and regularity conditions. The Morse index of a critical point u is
the number of descending directions of J at u.

One of the difficulties with proving Theorem 1.1 is that Ω is a disk. For a square domain, an analogous
result was proved in [2]. And for the disk, it is possible [3] to obtain an accurate numerical “solution” that
looks as shown in Fig. 1. But we have hitherto been unable to prove that there exists a true solution nearby.

Before describing our approach in more detail, let us state two other results that can be proved in a
similar way. The first results concern again “minimally symmetric solutions to a highly symmetric problem”.
While the weight w in Theorem 1.1 had to be chosen carefully to obtain a minimally symmetric solution of
index 2, a standard Hénon weight w(r, ϑ) = rα suffices in the index-1 case. Here, and in what follows, (r, ϑ)
denote the standard polar coordinates on Ω .

Theorem 1.2. For α = 2, 4, 6, Eq. (1.1), with w = rα and f ′(u) = u3, admits a real analytic solution
u = uα > 0. This solution has Morse index 1 and is not invariant under any nontrivial rotation.

The solutions u2, u4, and u6 are shown in Fig. 2.
The same result, but without the statement about the lack of symmetry, is easy to prove: minimizing

J on the Nehari manifold N =
{
u ∈ H1

0(Ω) : DJ(u)u = 0 , u ̸= 0
}

shows that index-1 solutions exist and
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