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a b s t r a c t 

Localised failure of geomaterials in the form of cracks or shear bands always requires spe- 

cial attention in constitutive modelling of solids and structures. This is because the valid- 

ity of classical constitutive models based on continuum mechanics is questionable once 

localised inelastic deformation has occurred. In such cases, due to the fact that the macro 

inelastic responses are mainly governed by the deformation and microstructural changes 

inside the localisation zone, internal variables, representing these microstructural changes, 

should be defined inside this zone. In this paper, the localised failure mechanism is identi- 

fied and employed as an intrinsic characteristic upon which a constitutive model is based 

on at the first place, instead of being dealt with after developing the model using various 

regularisation techniques. As a result, inelastic responses of the model are correctly associ- 

ated with the localisation bands, and not smeared out over the whole volume element as 

in classical continuum constitutive models. It is shown that this inbuilt localisation mech- 

anism in a constitutive model can naturally capture important features of the material and 

possess intrinsic regularisation effects while minimising the use of additional phenomeno- 

logical treatments, and also possessing intrinsic regularisation effects. The development of 

the proposed model is based on an additional kinematic enhancement to account for high 

gradient of deformation across the localisation band. This enrichment allows the intro- 

duction of an additional constitutive relationship for the localisation band, which is rep- 

resented in the form of a cohesive-frictional model describing traction-displacement jump 

relationship across two sides of the localisation band. The model, formulated within a ther- 

modynamically consistent approach, possesses constitutive responses of the bulk material 

and two localisation bands connected through internal equilibrium conditions. Its key char- 

acteristics are demonstrated and validated against experimental data from different types 

of geomaterials under different loading conditions at both material and structural levels. 
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Glossary 

a o Elastic stiffness of material 

C Kinematic constraint 

D k Damage of crack k 

E Young’s modulus 

f t Tensile strength 

f c Compressive strength 

g Potential function of cohesive-frictional crack 

G I Mode I fracture energy 

G II Mode II fracture energy 

h k Thickness of crack k 

H k Characteristic length of crack k 

I 1 First invariant of stress tensor 

J 2 , J 3 Second and Third invariants of deviatoric stress tensor 

K n , K s Elastic normal and shear stiffness of crack 

K 

sec 
c Secant stiffness of crack in local coordinate system 

K 

sec 
c k 

Secant stiffness of crack k in local coordinate system 

K 

sec 
k 

Secant stiffness of crack k in global coordinate system 

K 

tan 
k 

Tangent stiffness of crack k in global coordinate system 

m Model parameters controlling shape of yield surface 

n i Normal vectors of crack in index notation 

n k Normal vector of crack k in matrix form 

p Hydrostatic pressure 

q Deviatoric stress component 

r k Residual vector of crack k 

R k Transformation matrix from global to local coordinate system of crack k 

t k Traction of crack k in global coordinate system 

t tr 
k 

Trial traction of crack k in global coordinate system 

˙ t cor 
k 

Corrective traction of crack k in global coordinate system 

t c = [ t n t s 1 t s 2 ] T Traction of crack in local coordinate system 

t c k = [ t k,n t k,s 1 t k,s 2 ] T Traction of crack k in local coordinate system 

u p Accumulated displacement parameter 

u k Total displacement jump of crack k in global coordinate system 

u c = [ u n u s 1 u s 2 ] T Total displacement jump of crack in local coordinate system 

u c k = [ u k,n u k,s 1 u k,s 2 ] T Total displacement jump of crack k in local coordinate system 

u 

e 
c Elastic displacement jump of crack in local coordinate system 

u 

p 
c = [ u 

p 
n u 

p 
s 1 

u 
p 
s 2 

] T Plastic displacement jump of crack in local coordinate system 

u 

tr 
k 

Trial displacement jump of crack k in global coordinate system 

u 

p 

k 
Plastic displacement jump of crack k in global coordinate system 

y Yield-failure function crack 

α0 , β Parameters controlling damage evolution 

γ Parameter controlling the non-associativity 

�k Area of crack k 

δ0 Displacement corresponding to peak stress in pure tension 

ε = [ ε 11 ε 22 ε 33 γ12 γ23 γ31 ] 
T 

Overall strain of RVE 

ε o = [ ε o , 11 ε o , 22 ε o , 33 γo , 12 γo , 23 γo , 31 ] 
T 

Strain of outer bulk material 

ηk Volume fraction of crack k 

θ Lode angle 
˙ λ Plastic multiplier 

� Lagrangian multipliers 

μ0 , μ Model parameters controlling shape of yield surface 

ν Poisson’s ratio 

ξk Strain of crack k 

σ ij Stress of RVE in index notation form 

σi ; i = 1 , 2 , 3 Principal stress 1, 2 and 3 

σtr Trial stress of RVE 

σo Stress of outer bulk material 

σ = [ σ11 σ22 σ33 σ12 σ23 σ31 ] 
T 

Stress of RVE in matrix form 

ϕ, κ Failure plane orientation of crack 

� Dissipation potential of RVE 
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