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a b s t r a c t

Experimental acoustic sensor networks are currently tested in large cities, and appear more and more as a
useful tool to enrich modeled road traffic noise maps through data assimilation techniques. One
challenge is to be able to isolate from the measured sound mixtures acoustic quantities of interest such
as the sound level of road traffic. This task is anything but trivial because of the multiple sound sources
that overlap within urban sound mixtures.
In this paper, the Non-negative Matrix Factorization (NMF) framework is developed to estimate road

traffic noise levels within urban sound scenes. To evaluate the performances of the proposed approach,
a synthetic corpus of sound scenes is designed, to cover most common soundscape settings, and whom
realism is validated through a perceptual test. The simulated scenes reproduce then the sensor network
outputs, in which the actual occurrence and sound level of each source are known.
Several variants of NMF are tested. The proposed approach, named threshold initialized NMF, appears

to be the most reliable approach, allowing road traffic noise level estimation with average errors of less
than 1.3 dB over the tested corpus of sound scenes.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In response to the growing demand from urban dwellers for a
better environment, noise mapping has been recommended as a
tool to tackle noise pollution. The enactment of the European
Directive 2002/EC/49 makes such maps mandatory to cities over
100 000 inhabitants. Those maps play an important informative
role, establishing the distribution of the sound levels all over the
cities as well as the estimation of the number of city dwellers
exposed to high sound level (>55 dB(A)) [1]. Road traffic concen-
trates particular attention as it is the main urban source of noise
annoyance. Road traffic noise maps are typically built from data
collection that consist of traffic data collected on the main roads
(flow rates, mean speeds and heavy vehicle ratio) and urban
geographic data (building heights and location, topology, ground
surfaces . . .). Follows sound emission and sound propagation
computational techniques, resulting in the production of the two
indicators equivalent A-weighted sound levels, LDEN (Day-Evening-
Night) and LN (Night) [2]. This procedure also enables drawing up
action plans to reduce the noise exposure. Despite their unani-

mously recognized interest, noise maps suffer from some limita-
tions. The computing cost required to produce noise maps at the
city scale calls simplifications of the numerical tools and the
simulation models that both generate uncertainties [3,4]. Data col-
lection is itself also a vector of uncertainty. Moreover, the produced
aggregated indicators do not model the sound levels evolution due
to the traffic variations throughout the day.

Noise measurements are thus increasingly used in addition to
simulation to describe urban noise environments [5–7]. Several
measurement set-ups have been proposed in the last years, includ-
ing mobile measurements with high quality microphones [8,9],
participative sensing through dedicated smartphone applications
[10,11], or the development of fixed-sensor networks. In this latter
case, the sensor networks can be based either on high-quality sen-
sors as in [12,13], or low-cost sensors as in the DYNAMAP project
[14] or the CENSE project [15]. The costs and benefits of each
protocol are discussed. Mobile and participatory measures increase
spatial coverage at low cost, but lack temporal representativeness.
Fixed networks are very reliable for measuring sound levels tem-
poral variations, but allow only a small spatial coverage of the net-
work. In addition, the low-cost sensors enable a wider deployment,
but at the cost of increased uncertainties, the most extreme exam-
ple being smartphone applications.
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All these measurement protocols allow the combination of mea-
sures and predictions to improve the accuracy of the produced noise
maps. Traffic noise maps and measurements were compared on
restrictive areas in [16,17]. Wei et al. [18] modify the acoustical
parameters of the simulation thanks to noise measurements, while
Mallet et al. [19] call for data assimilation techniques betweenmod-
els and measurements to reduce the uncertainty of the produced
noise maps. However, these works make the implicit assumption
that the noise measurements consist mainly of road traffic. In the
aim to improve road traffic noise maps, the use of measurements
has first to deal with the challenge to estimate correctly the road
traffic sound level. Even if road traffic is predominant onmanyurban
areas, urban sound environments are composed of many different
overlapping sound sources (passing cars, voices, footsteps, car horn,
whistling birds . . .), what makes the task of estimating correctly the
traffic sound level within an urban sound mixture not trivial.

Many works have dealt with the classification [20,21], the
detection [22,23] or the recognition [24,25] of urban sound events.
In these cases, a two-step scheme is followed where audio samples
are described with a set of features (Mel Frequency Cepstral Coef-
ficient, MPEG-7 descriptors . . .) and classified with the help of a
classifier (Gaussian Mixtures Models, Artificial Neural Network
. . .) [26,27]. The classifier is learnt from a learning database and
is next applied on a test database to validate the algorithms. Ded-
icated to the traffic, in [28], an Anomalous Event Detection, based
on MFCC features, is proposed with the specific aim to improve the
traffic sound estimation. It is based on the detection of unwanted
sound events in order to discard them.

An other approach, followed in this paper, is to consider the blind
source separation paradigm which consists in the extraction of a
specific signal inside a set of mixed signals, see Fig. 1. From the dif-
ferent existing methods, Non-negative Matrix Factorization (NMF)
[29], appears to be a relevant method for monophonic sensor net-
works. Many applications can be found for musical [30,31] and
speech [32,33] contents. Dedicated to sound separation with envi-
ronmental sounds, Immani and Kasaï [34] used NMF in a two steps
sound separation with the help of time variant gain features. Dedi-
cated to the traffic sound separation, a first study [35] has been con-
ducted, in which diverse NMF estimation rules are compared,
namely the supervised, the semi-supervised, and the threshold ini-
tialized NMF, have been applied on a large set of simulated sound
scenes. This corpusmixes 6 sound categories (alert, animals, climate,
humans, mechanics, transportation) with a traffic component cali-
brated to different sound levels, according to the other sound classes
(in the rest of the document, these sound classes, not related to the
traffic component, are resumed as the interfering sound class), to
obtain variable traffic predominance. The diversity of this corpus
wasmade to assess theperformances and the limits of eachNMF for-
mula. However, if this study reveals the interest of NMF for urban
sound environments, the assessment of its performance on a corpus
of realistic sound scenesmust be carried out in order to implement it
on a sensor network. Designurban soundmixturesmakes it possible
to access to many acoustic properties as the onset and offset time
and the sound level of each sound class and especially the traffic
component. The realistic aspect of such a corpus is essential to
obtain sound scenes similar to recordings and to validate NMF per-
formances. However, like all simulated process, the realism of the
scenes must be perceptually verified.

In this paper, an urban sound corpus based on annotated urban
recordings, and whose degree of realism is assessed through a per-
ceptual test, is designed in order to estimate the traffic sound level
with the help of the NMF framework. The different NMF
approaches are described in Section 2. Next, the corpus of urban
sound scenes is presented in Section 3, from the sound database
built-up to its validation. The experimental protocol and the
results are then presented and discussed in Sections 4 and 5.

2. Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) is a linear approxima-
tion method proposed by Paatero and Tapper [36] and popularized
by Lee and Seung [29]. It consists in approximating a non negative
matrix V 2 RþF�N by the product of two non negative matrices: W,
called dictionary (or basis), and H, called the matrix activation with
dimensions F � K and K � N respectively,

V �WH: ð1Þ
The choice of the dimensions is often made such as

F � K þ K � N < F � N so that NMF can be a low rank approxima-
tion. This condition however is not mandatory. When applying
NMF to audio data, V is usually considered as the magnitude spec-
trogram obtained by a Short-Time Fourier Transform, W includes
audio spectra and H is equivalent to the temporal activation of
each spectrum, see Fig. 2. Because of the non-negativity constraint,
only additive combinations between the elements of W are
considered.

The approximation of V by WH product is defined by a cost
function to minimize,

min
HP0;WP0

D VkWHð Þ; ð2Þ

where D �k�ð Þ is a divergence calculation such as:

D V jjWHð Þ ¼
XF

f¼1

XN
n¼1

db Vfn j WH½ �fn
� �

: ð3Þ

db x j yð Þ is usually chosen as a b-divergence [37], a sub-classes
belonging to the Bregman divergences [38] which include 3 specific
divergence calculations: the Euclidean distance Eq. (4a), the
Kullback–Leibler divergence Eq. (4b) and the Itakura-Saïto diver-
gence Eq. (4c):

Fig. 1. Block diagram of the blind source separation model.

Fig. 2. NMF decomposition of an audio spectrogram V composed of 3 elements
(K = 3): passing car (a), car horn (b) and whistling bird (c).

230 J.-R. Gloaguen et al. / Applied Acoustics 143 (2019) 229–238



Download English Version:

https://daneshyari.com/en/article/11031434

Download Persian Version:

https://daneshyari.com/article/11031434

Daneshyari.com

https://daneshyari.com/en/article/11031434
https://daneshyari.com/article/11031434
https://daneshyari.com

