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A B S T R A C T

The aim of this paper is to derive an accurate input/output dynamic equivalent model of a So–Nick Battery
Energy Storage System (BESS). For this purpose, an on-line identification methodology has been applied. By this
methodology, unknown model parameters are identified in the continuous time domain by solving an optimi-
zation problem aimed at minimizing the error between output trajectories of the physical system and its dynamic
equivalent model. The methodology is based on the Sensitivity theory involving the Lyapunov function, ensuring
the stability of the algorithm.

Experimental results are used to validate the proposed approach by adopting the Sodium–Nickel Battery
Energy Storage System (BESS) embedded into the experimental Prince Lab of the Polytechnic University of Bari,
Italy.

1. Introduction

Battery Energy Storage Systems (BESSs) are attracting growing at-
tention as a viable solution to the increasing penetration of Distributed
Generators (DGs) and, more properly, of non-programmable Renewable
Energy Sources (RESs). In fact, thanks to their fast response time and
their control flexibility, BESSs are capable to balance short-term power
fluctuations of non-programmable RESs circumventing thus the pro-
blems associated with the inherent intermittence of such resources [1].
At the same time, the energy storage can contribute to alleviate grid
congestions caused by a high share of DGs. Due to the potential benefits
offered by BESSs, there is a continued interest in providing incentives
and other economic support for increasing the adoption of such systems
[2]. As result, many types of BESSs have been installed into distribution
networks or are in the planning stage. Anyway, the issue on how to
control such devices in order to maximize advantages deriving from
their adoption is still pending, even if a lot of approaches have been
developed during the last years [3–7]. In particular, in Ref. [4] a pre-
dictive control has been suggested for optimizing resources of re-
sidential prosumers in a demand response framework. In Ref. [5] a
recurrent neural network control strategy has been developed. In Ref.
[7] the authors developed an optimal management strategy for the hot-
temperature sodium nickel chloride battery system. The optimal control
actions are evaluated by adopting a discrete-time model for the given
BESS technology.

Although, these control strategies have proven to be effective for the
optimal BESS management, they are highly sensitive to both steady-
state and dynamic behavior of the BESS which, in turn, are greatly
dependent on several factors such as the size and location of the BESS,
the type of the adopted battery, the working temperature, the state of
charge, and the charge and discharge rates.

In order to obtain stable performances under several operating
conditions, both steady-state and dynamic behavior of BESSs need to be
investigated. Such studies are usually made through static and dynamic
simulations performed by means of mathematical simulation models
implemented into commercially available software tools. Therefore, the
correctness of results obtainable with these simulations strongly de-
pends on the adopted BESS model. For this reason, several types of
models with different degree of complexity have been recently devel-
oped.

The technical literature extensively investigated on the battery
model, ignoring the effects of interfacing converters on performances of
the overall BESSs. In this sense, full order models able to keep all
possible battery dynamics in every operating condition have been de-
rived [8–10]. In these works, experimental investigations have been
adopted to derive the dynamic models of the batteries. In particular,
referred papers adopt dynamic battery responses following to current
pulses under several operating conditions in terms of battery tem-
perature and state of charge (SOC). Anyway, resulting tests can be
numerous thus, papers [11–13] developed methods based on electric
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circuit models ignoring thermal and chemical effects. If more accurate
estimations are required, detailed battery models should be adopted. In
this sense, the simultaneous estimation of the SOC and electric para-
meters can be done by adopting a temperature-based model combined
to an Unscented Kalman Filter (UKF) [14,15], or an adaptive UKF [16],
or an extended Kalman Filter (EKF) [17,18].

However, the computational effort required by the identification
problem can be reduced by decoupling slow and fast dynamics in the
time domain as suggested in Refs. [19,20]. If a high accuracy level is
required, models need to be more sophisticated, as in Refs. [21,22]. An
alternative approach in deriving fruitful battery models has been pro-
vided by data-driven methods. The basic idea is to derive a simple
empirical model able to correlate the battery inputs with the outputs by
adopting nonparametric approaches such as Recursive Last Squares
(RLS) [23], Adaptive Genetic Algorithm (AGA) [24], and dynamic
Markov machine model [25]. However, as outlined in Ref. [26] the
accuracy of these methods is largely dependent on the amount and
quality of training data available. For this reason, many researchers
focused on reduced order models whose parameters are continuously
updated as the system operating conditions change, giving rise to on-
line auto adaptive parameter identification algorithms. They are based
on the Extended Kalman Filter [27], the Least-Squares (LS) [28], the
Recursive Least-Squares (RLS) [29–31], the, Genetic Algorithm (GA)
[32], and the Lyapunov direct method [33,34].

Anyway, if dynamic studies of AC networks embedding BESSs must
be performed, these battery models must be integrated with those of
AC/DC interfacing converters, as in the case of the papers [35,36].
Derived high order models would be fruitfully adopted for small signal
stability analysis in microgrids embedding fast-acting power electronic
converters as in Ref. [37]. In Refs. [38,39] an incremental BESS model
for load frequency control has been developed. In order to enhance the
performances of these models, in Ref. [40] an incremental BESS model
operating at constant power has been suggested.

Although these models can achieve good performances, their ap-
plication is limited to the specific BESS technology and conditions for
which they have been developed. To overcome this issue, a generalized
energy storage system model has been proposed in Ref. [41]. It is
mainly adopted for voltage and angle stability analysis even if, as
shown in Ref. [42], it can be also coupled with a wide range of control
strategies.

Even if attractive for their accuracy, these models seem to be very
expensive from a computational point of view, giving rise to unpractical
real-time controllers. To overcome this problem, it may be advisable to
adopt reduced order models of BESSs. These models are usually ob-
tained by neglecting dynamics that do not significantly affect the dy-
namic phenomenon of interest [43–45]. However, these methods re-
quire a thorough knowledge of physical laws characterizing all BESS
dynamics like full order models. In addition, the resulting simplified
model cannot be generalized to other BESS dynamics. This occurs be-
cause the derived reduced order model is rigidly bounded to the initial
assumptions made to handle only selected dynamics. For these reasons,
it is advisable to consider input–output models that usually treat the
physical system to be modeled as a gray-box model. In the attempt to
exploit this unexplored methodology on BESSs, in this paper a simpli-
fied model which is flexible enough to capture all dynamic features of a
BESS has been derived. In particular, this paper has been focused on the
Sodium–Nickel Chloride batteries since they have not received suffi-
cient attention from the scientific community over the last decade. In
order to take advantages in terms of the computational burden in
treating low order models in stability studies, parameters to be identi-
fied refer to a second-order dynamic equivalent model. As in classical
input–output model identification, the derived model is not supported

by physical laws and thus, it could not have physical meaningful and
correspondence with the physical system. Model parameters must be
adjusted so that the assumed second-order model reflects the same
dynamic behavior of the given system following the same input.

The identification problem can be treated as an optimization pro-
blem aimed at minimizing the error between output trajectories of the
BESS and its dynamic equivalent model. In this paper, the solution of
this problem is evaluated by adopting a non-linear parameter identifi-
cation process involving the Sensitivity theory applied to the Lyapunov
method. The application of this methodology ensures an always stable
algorithm that can be applied in the continuous time domain.

Experimental results are used to validate the proposed approach by
adopting the Sodium–Nickel Battery Energy Storage System (BESS)
embedded into the experimental Prince Lab microgrid at the
Polytechnic University of Bari, Italy.

2. Mathematical formulations of the on-line parameter estimation
method

The aim of this section is to develop a methodology for the on-line
parameter identification of a simplified model of a generic dynamic
system by means of input/output measurements. The essential idea is to
excite the physical system and its simplified model with the same input,
and to compare their corresponding outputs. As first step, the metho-
dology requires the definition of an adequate order of the model able to
give a “good” fit of the system output. In this sense, the model order will
be chosen as compromise between the accuracy and the derived com-
putational effort. Once the appropriate model has been selected, the on-
line identification process takes place, updating model parameters until
steady state values are reached. Note that, the adoption of a dynamic
equivalent model instead of the full dimensional system will produce a
structural fitting error that will be recovered by time-varying para-
meters. In particular, after a first transient characterized by large os-
cillations, parameters will reach steady-state values fluctuating around
an average value, which will be taken as “true” values.

The identification of unknown parameters adopted in this paper, is
based on the Lyapunov method involving the Sensitivity theory [46].

Let the given system be represented by the following differential
equation:
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where n and m are positive-integer constants representing the order of
the plant, such that n > m; u t( ) and y t( ) are, respectively, input and
output trajectories in the time domain; αi (for i = 0, …, n − 1) and βj
(for j = 0, …,m) are time-constant parameters of the dynamic system.

It is assumed to approximate the dynamic behavior of the system
under investigation (1) with the following dynamic equivalent model:
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where h is the order of the assumed fitting model, such that h ≤ n and
h > p.

Let define the + +h p[ ( 1)]-dimensional vector of unknown para-
meters as:
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Define the h-dimensional fitting error vector e(t) as:
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The aim of the identification procedure is to adjust the set of un-
known parameters such that the fitting error vector is null or with a
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