
A fractal model of effective thermal conductivity for porous media
with various liquid saturation

Xuan Qin a, Jianchao Cai a,b,⇑, Peng Xu c, Sheng Dai d, Quan Gan e

aHubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, PR China
b State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China
cCollege of Science, China Jiliang University, Hangzhou 310018, PR China
d School of Civil and Environmental Engineering, Georgia Institute of Technology Atlanta, GA, USA
eDepartment of Petroleum Geology & Geology, School of Geosciences, University of Aberdeen, UK

a r t i c l e i n f o

Article history:
Received 2 June 2018
Received in revised form 1 September 2018
Accepted 15 September 2018

Keywords:
Effective thermal conductivity
Porous media
Fractal
Saturation

a b s t r a c t

Thermal conduction in porous media has received wide attention in science and engineering in the past
decades. Previous models of the effective thermal conductivity of porous media contain empirical param-
eters typically with ambiguous or even no physical rationales. This study proposes a theoretical model of
effective thermal conductivity in porous media with various liquid saturation based on the fractal geom-
etry theory. This theoretical model considers geometrical parameters of porous media, including porosity,
liquid saturation, fractal dimensions for both the granular matrix and liquid phases, and tortuosity fractal
dimension of the liquid phase. Effects of these geometrical parameters on the effective thermal conduc-
tivity of porous media are also evaluated. This proposed fractal model has been validated using published
experimental data, compared with previous models, and thus provides a physics-based theoretical model
that can provide insight to geoscience and thermophysics studies on thermal conduction in porous
media.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal conduction in porous media is essential to many appli-
cations, such as exploiting and utilizing geothermal energy [1,2],
determining heat flow in hydrothermal systems [3], reconstructing
past climate [4], modeling hydrocarbon formation processes [5],
and investigating potential nuclear wastes [6]. As thermal conduc-
tivity is a key thermophysical parameter in characterizing the heat
transfer process of porous media, accurate evaluation of thermal
conductivity is important in many engineering and science fields
[7–10].

Existing effective thermal conductivity models are mostly clas-
sical mixing laws. The well-known weighted arithmetic and har-
monic means are used as the upper and lower limits of thermal
conductivity for two-phase saturated porous media (i.e., the paral-
lel and series models) [1,7]. The Maxwell-Eucken model is often
used to characterize the thermal conductivity of porous media,
where spherical pores are assumed to be widely dispersed in a con-

tinuous medium. The effective medium theory provides approxi-
mated thermal conductivity for macroscopically homogeneous
and isotropic media containing randomly distributed grains and
pores [11], which can be predicted based on the thermal-
electrical analogy theory [12].

Recently, Carson et al. [13] classified the materials into two
types (i.e., internal porosity, external porosity) and proposed a
thermal conductivity range for isotropic porous media. Wang
et al. [14] derived a unified equation for five fundamental effective
thermal conductivity structural models (i.e., series, parallel, two
forms of Maxwell-Eucken, and effective medium theory), although
the determination of appropriate parameters in these models
remains a challenge. Gong et al. [15] proposed another analytical
expression unifying above five fundamental effective thermal con-
ductivity structural models without any weighting parameter.
However, none of these above-mentioned theoretical models con-
siders the impacts of porous media’s microstructure, such as pore
geometry, pore size distribution, and the tortuosity of micro-
pores on thermal conduction. Additionally, many numerical
approaches, such as Monte Carlo method [16], finite element
method [17], and lattice Boltzmann method [18], are developed
to study the thermal conductivity of porous media. These results
are often expressed as semi-empirical functions.
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The fractal geometry theory has been widely used to study the
transport properties of disordered porous media, such as thermal
conductivity [19,20], spontaneous capillary imbibition [21–23],
permeability [24–27], and electrical conductivity [28,29]. Yu and
Cheng [30] developed a model to calculate the effective thermal
conductivity of bi-dispersed porous media based on the fractal the-
ory and electrical analogy technique. Ma et al. [31] proposed a frac-
tal method to predict the effective thermal conductivity of
saturated and unsaturated porous media based on the Sierpinski
carpet model. The Sierpinski carpet fractal model was then gener-
alized by Feng et al. [32,33]. Jin et al. [12] applied the Sierpinski
carpet fractal model proposed by Feng et al. [32,33] to calculate
the effective thermal conductivity of autoclaved aerated concrete
with different moisture content. Kou et al. [34] presented a fractal
analysis on the effective thermal conductivity for saturated and
unsaturated porous media without any empirical constant. Pia
et al. [35,36] proposed an intermingled fractal model for the ther-
mal conductivity of porous media considering microstructures.
Miao et al. [37] proposed an analytical expression of effective ther-
mal conductivity for saturated dual-porosity media based on frac-
tal characteristics of pores and fractures. Furthermore, the fractal
models for heat conduction of porous media have been proposed
to study the thermal conductivity of nanofluids, by considering
the fractal characteristics of nanoparticle sizes and the heat con-
vection through the Brownian motion of nanoparticles in fluids
[38]. Wei et al. [39] proposed a theoretical effective thermal con-
ductivity model for nanofluids based on the fractal distribution
characteristics of nanoparticle aggregation.

The thermal conductivity of porous media is strongly influenced
by the media’s microstructural features, which can be well charac-
terized by the fractal geometry. However, most previous fractal
models of effective thermal conductivity are proposed by the
thermal-electrical analogy technique. In this study, a theoretical
fractal model of effective thermal conductivity for both saturated
and unsaturated porous media is presented originated from the
Laplace’s Equation. The proposed fractal model is validated by pub-
lished experimental data, and the effects of various geometrical
parameters on the effective thermal conductivity of porous media
are also discussed.

2. A fractal thermal conductivity model for saturated porous
media

The local thermal flux q in a porous mediumwith a temperature
gradient rT is given by [40]

q ¼ �krT; ð1Þ
where k is the thermal conductivity and k ¼ kf for the pore fluid
phase and k ¼ ks for the solid phase. Eq. (1) is defined by the classi-
cal Fourier’s law. The ensemble volume-averaged solution of Eq. (1)
is given by

�q ¼ �kerT; ð2Þ
where ke is the effective thermal conductivity of the porous med-
ium, �q is the ensemble volume average of local thermal flux, and
rT is the ensemble volume average of the local temperature gradi-
ent. These ensemble volume-averaged quantities are given by [11]

�q ¼ 1
V

Z
V
qdV ; ð3Þ

rT ¼ 1
V

Z
V
rTdV ; ð4Þ

where V is the total volume of the porous medium.

Then, the ensemble volume average of local thermal flux can be
rewritten as [40,41]
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where Vp is the pore volume and Vk is the volume of a grain. It is
assumed that the grains have identical thermal conductivity ks.
Thus, it becomes a classical problem of temperature distribution
in a single sphere (grain) with a diameter k and thermal conductiv-
ity ks immersed in a continuous medium (pore phase) with thermal
conductivity kf . This system is subjected to a steady-state tempera-

ture gradient rT in the direction of the z-axis, as shown in Fig. 1.
In the steady-state condition, the temperature distribution of a

single particle within a uniform medium obeys the Laplace’s Equa-
tion in a spherical coordinate system as [13]:
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where h is the polar angle, u is the azimuthal angle, and r is the dis-
tance (radius) from a point to the origin. Assuming symmetry about
the z-axis such that the temperature distribution is independent of
u, Eq. (6) can be rewritten as [15]:
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a general solution of Eq. (7) is [13,15]

T ¼ Aþ B
r
þ Cr coshþ D

r2
cosh; ð8Þ

where A, B, C, D can be obtained by the following boundary
conditions:

(1) at r ¼ 0, Ts–1;

(2) at r ¼ k
2, ks

@Ts
@r ¼ kf

@Tf
@r and @Ts

@h ¼ @Tf
@h ;

(3) at r � k
2, Tf ¼ rT � z ¼ rTrcosh.

With boundary conditions, the temperature distribution within
the sphere can be gotten by solving Eq. (8):

Ts ¼ 3kf
ks þ 2kf

rTrcosh: ð9Þ

And the temperature distribution outside the sphere is:

Tf ¼ rcosh�rT
k3

8
ks � kf
ks þ 2kf

cosh
r2

: ð10Þ

Based on Eq. (9), the thermal flux through a single grain is given
by

qk ¼ �ðks � kf Þ
Z
Vk

rTdV ¼ �pk3

6
3kf ks � kf
� �

ks þ 2kf

� �
rT: ð11Þ

Additionally, it has been shown that the irregular nature of nat-
ural porous media follows the fractal scaling law. Thus, the grain
size distribution is assumed to obey the following relationship
with grains diameters from k to kþ dk [42]:

�dN ¼ Dfsk
Dfs
maxk

� Dfsþ1ð Þdk; ð12Þ
where kmax is the maximum grain diameter, Dfs is the fractal dimen-
sion of grains, and dN < 0 suggests that the number of grains
decreases with increasing of the grain diameter. For natural porous
media, the relationship between the fractal dimension Dfs and
porosity / can be expressed as [42]
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