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a b s t r a c t

Graph-based multi-view feature extraction has attracted much attention in literature. However, conven-
tional solutions generally rely on a manually defined affinity graph matrix, which is hard to capture the
intrinsic sample relations in multiple views. In addition, the graph construction and feature extraction are
separated into two independent processes which may result in sub-optimal results. Furthermore, the raw
data may contain adverse noises that reduces the reliability of the affinity matrix. In this paper, we pro-
pose a novel Unsupervised Multi-view Feature Extraction with Dynamic Graph Learning (UMFE-DGL) to
solve these limitations. We devise a unified learning framework which simultaneously performs dynamic
graph learning and the feature extraction. Dynamic graph learning adaptively captures the intrinsic mul-
tiple view-specific relations of samples. Feature extraction learns the projection matrix that could accord-
ingly preserve the dynamically adjusted sample relations modelled by graph into the low-dimensional
features. Experimental results on several public datasets demonstrate the superior performance of the
proposed approach, compared with state-of-the-art techniques.

� 2018 Elsevier Inc. All rights reserved.

1. Introduction

High-dimensional features have been widely used for complex
data representation in many research fields such as multimedia
computing, data mining, pattern recognition and machine learning.
However, high-dimensional features lead to the problem of ‘‘curse
of dimensionality” and bring great computation pressure on the
machine learning models. Dimensionality reduction can mitigate
the problem by identifying the low-dimensional latent subspace
that could preserve the data similarities in original high-
dimensional space. It is generally achieved by two common para-
digms: feature selection and feature extraction. Feature selection
chooses a subset of the original features as low-dimensional repre-
sentations by dropping out irrelevant and noisy features, while fea-
ture extraction learns a specific transformation matrix to generate
projected dimensions that can still preserve the inherent data
characteristics. According to the dependence on semantic labels,
feature extraction can be further divided into two families: unsu-
pervised and supervised feature extraction. In this paper, we
mainly focus on the learning paradigm of unsupervised feature
extraction technique.

Unsupervised feature extraction generates low-dimensional
features without considering any explicit semantic labels. Due to
its desirable performance, many works have been developed fol-
lowing this paradigm in the past few decades. Multidimensional
Scaling (MDS) [1] finds an embedding subspace that preserves
the interpoint distances during dimensionality reduction. Principal
Component Analysis (PCA) [2] preserves the statistic variance mea-
sured in the high-dimensional input space into low-dimensional
embedding of data points. Isometric Feature Mapping (Isomap)
[3] extends MDS by incorporating the geodesic distances modeled
by a weighted graph. Locally Linear Embedding (LLE) [4] maintains
the local linearity of the sample during dimensionality reduction.
Locality Preserving Projection (LPP) [5] learns linear projection
maps by solving a variational problem that optimally preserves
the neighborhood structure of data. The main limitation of these
methods is that they can only deal with the feature extraction
problem on single-view data.

In contrast, real-world data is actually complex and multiple
features should be extracted to more accurately describe data con-
tents. In visual domain, an image is generally described by diverse
descriptors, such as GIST [6], SIFT [7] and HOG [8]. In audio
domain, an audio clip is usually represented by several audio fea-
tures, such as MFCC [9], LPC [10] and PLP [11]. Apparently,
multi-view data can capture the inherent data correlations from
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different aspects with more accuracy and comprehensiveness [12–
17].

Multi-view feature extraction is proposed to exploit the rele-
vance and complementarity of multi-view data. Typical examples
include Marginal Fisher Analysis (MFA) [18], Multi-View Spectral
Embedding (MSE) [19] and Multi-View Locally Linear Embedding
(MLLE) [20]. These methods are generally based on graph theory.
In them, several fixed graphs are first constructed to represent data
similarity in multiple views separately. Then, these graphs are
integrated into a unified one, based on which the ultimate feature
extraction is performed. Even though these methods achieve
impressive performance, they still suffer from several drawbacks:
(1) The graph construction and feature extraction are separated
into two independent processes, which tends to lead to suboptimal
results. (2) They learn the extracted features with the fixed affinity
graph matrix. Real-world data always contain noises that are
harmful to the quality of affinity graph. Thus, the subsequent fea-
ture extraction performance may be impaired accordingly. (3) They
suffer from the out-of-sample problem. They cannot process the
new data points that are not included in the training set.

To solve these problems, in this paper, we propose a novel
unsupervised multi-view feature extraction method with dynamic
graph learning. The main contributions of this paper are summa-
rized as follows:

� We devise a joint unsupervised multi-view feature extraction
learning framework that learns a feature extraction matrix
and an dynamic graph simultaneously. This framework enables
the feature extraction matrix to possess satisfactory projection
ability that can preserve the modeled data correlations. Mean-
while, the dynamic graph can adaptively model the correla-
tional relationships between multi-view data. To the best of
our knowledge, there is still no similar work.

� An effective optimization solution guaranteed with desirable
convergence is proposed to iteratively learn the optimal view
combination weights, dynamic graph structure and feature
extraction matrix. It can reach to optimal solution after finite
iterations, which has conspicuous advantage in unsupervised
multi-view feature extraction.

� Extensive experiments on public multi-view datasets demon-
strate the proposed method can achieve state-of-the-art perfor-
mance, and also validate the desirable advantage of dynamic
graph learning on multi-view feature extraction.

The rest of this paper is organized as follows. In Section 2, we
briefly review the related work. In Section 3, we detail the pro-
posed approach. In Section 4, we show the theoretical analysis
about UMFE-DGL. In Section 5, we present the experiments.
Finally, we conclude the paper in Section 6.

2. Related work

In this section, we briefly review the related research on unsu-
pervised feature extraction and multi-view learning.

2.1. Unsupervised feature extraction

Unsupervised feature extraction projects high-dimensional data
into the low-dimensional subspace with similarity preserving. It
has been widely utilized in many fields such as pattern recognition
and machine learning. Various methods have been developed in
these research areas. They roughly include linear and nonlinear
learning paradigms. Principal Component Analysis (PCA) [2] is a
typical linear unsupervised feature extraction method. The core
of PCA is to map high-dimensional data to a low-dimensional space

through linear projection, while preserving the perspective of
covariance of features. The limitation of PCA is that it cannot
ensure the learned subspace to be discriminative. Locally linear
embedding (LLE) [4] is a representative non-linear feature extrac-
tion method that can maintain the original manifold structure into
the reduced data dimensions with locally linear embedding. How-
ever, it is sensitive to the number of nearest neighbors, which has a
great impact on the feature extraction performance. Projective
Unsupervised Flexible Embedding Models with Optimal Graph
(PUFE-OG) [21] proposes flexible graph learning to reduce dimen-
sions for image and video processing, but the graph learning relies
on a fixed graph that may be unreliable.

2.2. Multi-view learning

In many real world applications, data are often collected from
different views since single view data cannot comprehensively
express the example [22–25]. Thus, many multi-view learning
approaches are proposed and they have benefited for many appli-
cations. For instance, [26] develops a multiple social network
learning model to predict volunteerism tendency. [27,28] propose
multi-source multi-task learning scheme to achieve user interest
prediction. [29] introduces a multi-view transfer learning frame-
work to predict image memorability. [30] focuses on popularity
prediction of micro-videos by presenting a low-rank multi-view
embedding learning framework. [31–36] also consider learning
with multiple views to improve the performance.

In feature extraction, multi-view methods are proposed to
exploit the complementary and correlation of multi-view features.
For example, Multi-View Spectral Embedding (MSE) [19] first
builds patches for samples on different views, and then obtains
the low-dimensional embedding by the part optimization. Finally,
all low-dimensional embeddings from different patches are unified
as a integrated one. The major problem of MSE is that it requires all
feature matrices to perform matrix decomposition, which will suf-
fer from great computation complexity. Multi-View Locally Linear
Embedding (MLLE) [20] preserves the geometric structure of the
local patch into the low-dimensional embedding according to the
locally linear embedding criterion. Although these methods have
good performance, they learn the extracted feature with fixed
graph matrices. Besides, the graph construction and feature extrac-
tion are separated into two independent processes without any
interaction. Thus, the sub-optimal feature extraction performance
may be possibly brought. Furthermore, real-world data inevitably
contain noises. The quality of the relied affinity graphs may be
impaired and thus the feature extraction performance may be
degraded. Unsupervised Multiple Views Feature Extraction with
Structured Graph (MFESG) [37] learns the feature extraction
matrix and the ideal structure graph simultaneously, and assigns
a weight factor for each view. This method aims to learn a struc-
tured graph for feature extraction. However, it performs the graph
learning on a fixed affinity graph matrix, whose quality directly
determines the quality of learned structured graph and the ulti-
mate feature extraction performance under this circumstance.

Different from the above methods, in this paper, we directly
learn the optimized dynamic graph from raw features without
dependence on any pre-constructed graph. Moreover, we carefully
consider the different contributions ofmulti-view features on learn-
ing dynamic graph by assigning them differentiated importance
weights. To the best of our knowledge, there is still no similar work.

3. Methodology

In this section, we will introduce the proposed UMFE-DGL in
detail. First, we give the relevant notations and definitions used
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