Astronomy and Computing 25 (2018) 159-167

Contents lists available at ScienceDirect

Astronomy and
Computing

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Tree-less 3d friends-of-friends using spatial hashing a

P. Creasey

Check for
Updates

Department of Physics and Astronomy, University of California, Riverside, CA 92507, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 12 May 2018

Accepted 21 September 2018
Available online 29 September 2018

Keywords:

Methods: N-body simulations
Methods: Data analysis
Cosmology: Dark matter

I describe a fast algorithm for the identification of connected sets of points where the point-wise
connections are determined by a fixed spatial distance — a task commonly referred to in the cosmological
simulation community as Friends-of-Friends (FOF) group finding. This technique sorts particles into fine
cells sufficiently compact to guarantee their cohabitants are linked, and uses locality sensitive hashing to
search for neighbouring (blocks of) cells. Tests on N-body simulations of up to a billion particles exhibit
speed increases of factors up to 20x compared with FOF via trees (a factor around 8 is typical), and are
consistently complete in less than the time of a k-d tree construction, giving it an intrinsic advantage over
tree-based methods. The code is open-source and available online at https://github.com/pec27/hfof.

Cosmology: Large-scale structure of
universe
Methods numerical

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A way to identify dense groups of points in R¥ is to construct
connected components of points where direct connections are
given for all pairs of points whose Euclidean separation is less
than a ‘linking length’ b. This task is particularly common when
processing cosmological simulations of the A cold-dark matter
model to find the statistics of halos, which are virialised objects
with a mean density of approximately 200x the critical density
of the universe (Gunn and Gott, 1972; Bertschinger, 1985; Eke et
al., 1996). Simulations of these objects discretise the (primarily
dark) matter distribution into N bodies (Davis et al., 1985), and
at any given time-scale of interest a catalogue of the connected
components (or ‘friends-of-friends’ groups) in R3 is constructed
(e.g.Jenkins et al.,2001; Reed et al., 2003, 2007; Crocce et al., 2010;
Courtinetal., 2011; Angulo et al., 2012, although other alternatives
exist, see Knebe et al., 2011 for an overview). The data sets of these
simulations have grown from 32,768 particles (Davis et al., 1985) to
the trillions of particles this decade (Skillman et al., 2014), making
the production of these group catalogues challenging.

The ubiquitous algorithm for finding these friends-of-friends
(hereafter FOF) groups is to perform a breadth-first search (e.g.
Huchra and Geller, 1982). In this algorithm, finding connected
components proceeds in the following manner: a stack of boundary
points is maintained (initialised with a single point), and at each
step a point is removed (marked as linked) and replaced by all its
(unlinked) neighbours within the linking length, and this proceeds
until the stack is empty, and the component is complete. This fixed-
radius neighbour search is performed via organisation of the points

E-mail address: peter.creasey@ucr.edu.

https://doi.org/10.1016/j.ascom.2018.09.010
2213-1337/© 2018 Elsevier B.V. All rights reserved.

into a k-d tree, a binary space partitioning structure where neigh-
bour searches can be performed in O(log n) operations, n being the
total number of points. Examples of such codes include Behroozi et
al. (2013), the FOF code from the NbodyShop,' which is the almost
unmodified ancestor of more recent codes such as Cola (Koda et
al., 2016; Carter et al., 2018), YT (Turk et al., 2011) and probably
many others unknown to this author. As far as I am aware k-d
trees are used to perform the neighbour finding step in the non-
public codes also, such as Kwon et al. (2010) and Fu et al. (2010)
and ARepo (Springel, 2010, and also the non-public version of its
predecessor GADGET-2). Some of these codes have been designed
to create the group catalogue in parallel (often on the same cluster
as the simulation), to mitigate the analysis problems.

Recently Feng and Modi (2017) have released an open source
(k-dimensional) FOF algorithm kdcount? that is used in NBODYKIT
(Hand et al., 2017). This algorithm uses the dual tree method (e.g.
Moore et al., 2001) which exploits the fact that the searching points
are hierarchically organised, allowing neighbour calculations (ei-
ther inclusions or exclusions) to be calculated (typically excluded)
for entire branches of the search tree. Their algorithm is not strictly
breadth-first, a consequence of which is the need to merge compo-
nents using a (customised) disjoint-set algorithm (Tarjan, 1975).

An alternative method for neighbour searches is the mapping of
points on a fixed-grid, for example in the ‘chaining mesh’ method
of Hockney and Eastwood (1988, sec 8.4.1) for a short-range com-
ponent of the Coulomb force, and in the correlation function code
Corrfunc (ascl:1703.003). By choosing a cell width greater than the

1 http://faculty.washington.edu/trq/hpcc/, see also https://github.com/N-BodyS

hop/fof for the code.
2 see http://rainwoodman.github.io/kdcount.

https://doi.org/10.1016/j.ascom.2018.09.010
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2018.09.010&domain=pdf
https://github.com/pec27/hfof
mailto:peter.creasey@ucr.edu
https://github.com/junkoda/cola%5Fhalo
http://rainwoodman.github.io/kdcount
http://faculty.washington.edu/trq/hpcc/
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
https://github.com/N-BodyShop/fof
http://rainwoodman.github.io/kdcount
https://doi.org/10.1016/j.ascom.2018.09.010

160 P. Creasey / Astronomy and Computing 25 (2018) 159-167

search radius, one guarantees that all neighbours are within the
26 adjacent cells (in 3-d). Since the extent of the short range force
is generally a multiple of the interparticle separation, this mesh
is coarse w.r.t. the particles, corresponding to a modest memory
footprint. Unfortunately, in the application FOF one is generally
interested in linking lengths of 0.2 x the interparticle spacing (e.g.
Davis et al., 1985), implying meshes of (at least) 125x the particle
count, and correspondingly a prohibitively large memory footprint.

A method to avoid such large data structures is to store only
the filled cells, mapping them into a 1-d hash-table (Yuval, 1975;
Bentley and Friedman, 1979) such that neighbouring cells can
be (speculatively) searched at the map (hash) of their location.
Such a method has been employed for fixed-radius neighbour
searches (e.g. Teschner et al., 2003; Hastings et al., 2005, some-
times referred to as locality sensitive hashing). This is O(1) for look-
ups, though limitations include the expense of the hash function,
the cost of resolving collisions (cells mapped to the same index)
and the decreased coherence of memory accesses.

Spatial hashing has been successfully implemented by Wu et
al. (2007) and Vijayalaksmi and Punithavalli (2012) for the related
clustering algorithm DBSCAN, which is a generalisation of FOF to
connecting components only about a subset of ‘core’ points (Ester
etal., 1996).

In practice these codes are not applied to FOF calculations,
possibly because they have not been optimised for this specialised
use-case. Spatial hashing appears to be less common in computa-
tional physics, with exceptions such as the parallelisation scheme
of Warren and Salmon (1993) and in the level set tracking methods
of Brun et al. (2012).

This paper describes a novel algorithm for performing FOF in
3-d by grouping points into fine mesh whose cells are sufficiently
compact to guarantee their points will be connected. These filled
cells are grouped into 4° blocks which are stored via spatial hash-
ing, the use of blocks decreasing the average number of hash-look-
ups per filled cell. The merging of cells happens ‘on the fly’ as the
blocks are inserted in a raster order, i.e. neighbours queries are only
performed over blocks previously inserted in the table, and then
the components are connected via the disjoint-sets algorithm, in a
manner similar to Feng and Modi (2017). An example implemen-
tation is provided at https://github.com/pec27/hfof.

This paper is organised as follows. Section 2 describes the spa-
tial hashing and linking algorithm, optimisations, and the method
applied for periodic domains. Section 3 describes the comparison
codes and test sets. Section 4 analyses the performance and com-
pares with other codes and Section 5 concludes.

2. Spatial hashing for fixed-distance neighbour linking

In this section a methodology for FOF group finding via spa-
tial hashing is described. Whilst this algorithm is not limited
to cosmological simulations, these are the motivation, and some
consideration of their features for this purpose as described in
Section 2.1. Section 2.2 describes the arrangement of points into
cells compact enough to guarantee connectivity, and their aggre-
gation into blocks to reduce the number of lookups. Section 2.3
describes the hash function and 2.4 describes the adjustments to
account for periodic domains.

2.1. Matter distribution in cosmological simulations

In the cosmological context, the clustering of matter produces
halos which at the low-mass regime have a mass function approx-
imating a power law
dN

— oM™ 1
i (1)

with @ ~ 1.9 (e.g. Reed et al,, 2007), and notably ¢ > 1 implies
a divergent low-mass tail, i.e. there should be an infinite number
density of low-mass clusters, our discrimination of them limited
only by our finite mass resolution (this is not strictly speaking
true of the real universe, where diffusion damping terms will limit
very low mass halos, but these are rarely resolved in cosmological
simulations). A corollary of this is that the groups found are likely to
be dominated (by number) by single particle groups,® and also that
the number of groups is a significant fraction of the total number of
particles (typically around one-third for cosmological simulations).
As such a FOF algorithm needs to be efficient in the cases where the
neighbourhood within a linking length is empty.

At the other extreme is that of high mass groups. Given the pre-
vious paragraph it may be tempting to think that most points are
in small groups, however this is not the case. This can also be seen
from Eq. (1), since /' MdM/ [dM (i.e. the mass-weighted average
halo mass) would have a divergent high-mass contribution, i.e. the
average particle is in a group of >>1 particles, the exact number
depending upon the mass function to higher masses (which in
discrete simulations often depends upon artificial limitations such
as the box size). As such the linking component of a FOF algorithm
needs to scale well, in order to handle the connection of points to
large groups.

Whilst both of these extremes need to be handled by group find-
ing algorithms, I find in general the former seems more demanding,
in that a significant fraction of the particles have zero neighbours
within the linking length, and the majority of the computational
time is spent confirming that these particles are truly isolated (see
for example the 2nd panel of Fig. 1). It is helpful to keep this in
mind during the following section.

2.2. Cell and block organisation

At the finest level, each particle is assigned to a cell according

to its position in a lattice with cell-width

b

c 7 (2)
where b is the linking length. Since the maximum distance be-
tween vertices in a unit hypercube in R¥ is /k, this guarantees that
any points in the same cell must belong to the same FOF group,
which essentially reduces the problem of linking points to one of
linking cells, and hereafter [will almost exclusively talk in terms of
cells. The filled cells are sorted in raster order (i.e. sorted by z then
y then x), which immediately places a bound on the complexity
of the algorithm to be at least O(n log n), similar to that of the k-d
tree construction.

This relationship of cell size to linking length is illustrated in
Fig. 1 (first panel), where the locus of potential neighbours for
positions in the central cell is highlighted. This lattice size guaran-
tees that any neighbouring particle within a distance < b must be
within a ‘stencil’ of the 116 adjacent cells (Fig. 1 rightmost panel).
This can be reduced by a factor of 2, to 58 neighbouring cells,
by assuming that the lattice is built in raster order and using the
symmetry of the distance metric, however 58 turns out to be a
rather large number of neighbour searches per cell (see discussion
in Section 2.3 about optimisation of hash-table look-ups). As such,
the cells are grouped into blocks of 4 x 4 x 4 (i.e. 64) cells, i.e. the
block width is

A =4c (3)

3 in the analysis of cosmological simulations groups with small (e.g. < 20)
particles are generally ignored, but at the stage of constructing FOF groups these
have yet to be filtered.

4 je.58 subsequent cells will be connected when they search for the current cell.

https://github.com/pec27/hfof

Download English Version:

hitps://daneshyari.com/en/article/11031580

Download Persian Version:

https://daneshyari.com/article/11031580

Daneshyari.com

https://daneshyari.com/en/article/11031580
https://daneshyari.com/article/11031580
https://daneshyari.com

