
Applied Soft Computing Journal 73 (2018) 727–734

Contents lists available at ScienceDirect

Applied Soft Computing Journal

journal homepage: www.elsevier.com/locate/asoc

Sequential spectral clustering of hyperspectral remote sensing image
over bipartite graph
Aidin Hassanzadeh a,∗, Arto Kaarna a, Tuomo Kauranne b

a Machine Vision and Pattern Recognition Laboratory, School of Engineering Science, Lappeenranta University of Technology, Lappeenranta, Finland
b Mathematics Laboratory, School of Engineering Science, Lappeenranta University of Technology, Lappeenranta, Finland1

h i g h l i g h t s

• A sequential Spectral Clustering for remote sensing hyperspectral images.
• A bipartite graph representation to reduce the time-space complexity of affinity matrix.
• Mini-batch K-means to speed up large-scale hyperspectral image clustering.
• The proposed sequential spectral clustering outperforms benchmark clustering algorithms.
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a b s t r a c t

Unsupervised classification is a crucial step in remote sensing hyperspectral image analysis where pro-
ducing labeled data is a laborious task. Spectral Clustering is an appealing graph-partitioning technique
with outstanding performance on data with non-linear dependencies. However, Spectral Clustering is
restricted to small-scale data and neither has been effectively applied to hyperspectral image analysis.
In this paper, the unsupervised classification of hyperspectral images is addressed through a sequential
spectral clustering that can be extended to the large-scale hyperspectral image. To this end, this paper
utilizes a bipartite graph representation along with a sequential singular value decomposition and mini-
batch K-means for unsupervised classification of hyperspectral imagery. We evaluate the proposed
algorithm with several benchmark hyperspectral datasets including Botswana, Salinas, Indian Pines, Pavia
Center Scene and Pavia University Scene. The experimental results show significant improvements made
by the proposed algorithm compared to the state-of-art clustering algorithms.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Unsupervised classification (clustering) is an indispensable
technique in several advanced data analysis tasks such as image
segmentation, pattern recognition, and data mining. Indeed, clus-
tering plays a significant role in the processing of hyperspectral
remote sensing imagery, where labeled samples are laborious to
produce or are often inadequate.

A hyperspectral image (HSI) consists of hundreds of contiguous
spectral bands that provide detailed discriminative features. An
extensive range of spectral information can help to distinguish
spectrally similar materials and makes HSI a powerful tool in the
paradigm of remote sensing analysis. However, having several fine
spectral bands introduces complexities comprised by the curse of
dimensionality [1,2]. As HSI undergoes with non-linear scattering
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patterns, variations in the local geometry of the sun-canopy-sensor
triangle and nonuniform pixel composition [3], it may usually
come with non-linear dependencies. The intrinsic non-linearities
in HSI introduce several complexities that can be problematic with
traditional clustering algorithms such as K-means.

The spectral clustering (SC) [4,5] is a favorable graph-based
clustering approach on eigenvalue decomposition of a data affinity
matrix that can capture a broad range of data clusters with differ-
ent geometric structures. SC is built on a sparse graph represen-
tation of the data of interest, where each node in the graph rep-
resents an entity in data space and the graph edges represent the
respective affinities. Commonly, them eigenvectors corresponding
with the m smallest eigenvalues of the graph Laplacian matrix are
used to cluster the entities into discrete clusters of high similarity.

There are neither explicit nor implicit assumptions about data
cluster shapes in SC. This makes SC a promising candidate for
clustering data with potential non-linearities. SC is an appealing
clustering algorithm, but it does not fit well with large sample
size datasets. In its construction, it heavily depends on building
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pairwise affinitymatrixwhich involveswith highmemory require-
ments and thus is inefficient evenwith data containing amoderate
number of samples.

The challenges confronting SC in large-scale applications are
three-fold. First and the foremost, the computation of Laplacian
matrix of a massive data graph is highly demanding. In partic-
ular, the time and space complexity of constructing a Laplacian
matrix is O(n2d), where n is the number of samples, and d is the
dimension of data entries. This quadratic complexity introduces
serious scalability problems with the existing processing frame-
works that so make SC infeasible when dealing with large-scale
applications likely seen in HSI clustering task. Second, eigenvalue
decomposition in SC with a very large Laplacian matrix can be
very computationally involved. The time and space complexity of
the well-known eigenvalue decomposition solvers Lanczos [6] and
pre-conditioned conjugate gradient (CG-based) [7] are O(in2m)
and O(n2m) respectively, where m is the number of principal
eigenvectors and i is the number of iterations. Third, the traditional
SC relies on the Loyd’s classic K-means algorithm [8] to partition
data to discrete groups. Even though K-means is efficient with
large datasets, it cannot reasonably meet the requirements when
clustering results are quickly needed or regularly called as an
intermediate subroutine.

As a result, SC has not generally been applied to analysis of
hyperspectral remote sensing imaging data and even the existing
approaches in this context are usually limited only to HSI data
containing a few numbers of samples and neither can be applied
to large-scale dataset [9–11].

There are several extensions of SC for large-scale applications.
[12] proposes a fast and scalable spectral clustering algorithm
called the sequential matrix compression (SMC) method. In this
algorithm, the computational complexity of SC is addressed by
reducing the dimensionality of the Laplacian matrix. [13] imple-
ments a sequential spectral clustering algorithmon bipartite graph
realization of data.

Not many extensions of SC have been utilized for HSI clustering
tasks. [9,11] propose two multi-manifold spectral clustering algo-
rithms on tangential similarities for HSI, but the experiments are
restricted to hypercubes of a small number of samples. [10] pro-
poses a spatial–spectral co-clustering clustering algorithm based
on bipartite graph representation data. This co-spectral clustering
is shown efficient with HSI, but it will be limited to HSI data of
a few thousands samples. [14] introduces a fast SC with anchor
graphs for HSI clustering where data–anchor points affinities are
obtained through local regularization of combined spatial–spectral
features. Although the fast SC algorithmhas been shownpromising
in HSI clustering, it still involves several complexities particularly
in the computation of affinity matrix that can be slow with real-
world application. We also discovered a simple nearest-neighbor
affinity metric only based on spectral features can outperform the
proposed formulation of spatial–spectral affinity in [14].

In this paper, we present a new algorithm from the family of
spectral clustering with low time and space requirements needed
for large-scale HSI applications. Inspired by the work in [13], the
proposed algorithm follows a sequential procedure that can be
effectively extended to large-scale applications of remote sens-
ing HSI. We utilize a bipartite graph representation on radial ba-
sis function (Gaussian) kernel to capture data affinities. By this
mean, the attempt is to reduce the computational burdens in-
volved with building huge graph Laplacians. To address the com-
plexities present in eigendecomposition, the sequential Singular
Value Decomposition (SVD) is used. To compute anchor points
in the bipartite graph and the final data cluster assignment, we
utilize the mini-batch K-means [15] to meet. We evaluate the
performance of the proposed algorithm with five public bench-
mark HSI data, namely Botswana, Salinas, Indian Pines, Pavia Center

Scene and PaviaUniversity Scene. The experimental results show the
efficiency of the proposed SC while applied to HSI unsupervised
classification and demonstrate its competence compared to the
state of art clustering algorithms.

The remainder of the paper is organized as follows. Section
2 reviews the standard Spectral Clustering algorithm. Section 3
presents the overall procedure of the proposed sequential spectral
clustering, presenting the main steps involved. Section 4 presents
experimental results and evaluation of the effectiveness of the
proposed algorithm. Finally, Section 5 concludes the paper.

2. Spectral clustering

This section presents the main steps involved with the sequen-
tial spectral clustering (SSC) algorithm. We first briefly review the
standard formof SC and then cover themethodologies used for SSC.

2.0.1. Spectral clustering
Spectral Clustering is defined based on a graph based represen-

tation where clustering is performed as partitioning of a similarity
graph. Given a set of data points sampled from the original d-
dimensional input space X = {xi}ni=1, SC aims to cluster the data
points to K different disjoint groups. SC assumes that the data
reside on an undirected weighted graph G(V , E) where V = {vi}

n
i=1

is the set of nodes representing the data points and E = {eij} is a
set of edges connecting the nodes in local proximity. The graph G
is commonly constructed by k-nearest neighbor (k-NN) proximity
graphwhere a pair of nodes are connected if either of themappears
in the others local neighborhood.

The structure of graph is captured by a weighted affinity matrix
A ∈ Rn×n that its ijth element [A]ij describes the strength of
similarity between the graph node vi and the graph node vj. Given
a pair of points xi and xj, let Nk(xi) and Nk(xj) be their k-nearest
neighbors sets respectively. An entry in affinity matrix can be
defined using a Radial Basis Function (RBF) or Gaussian kernel as
follows:

[A]ij =

{
exp(−γ ∥xi − xj∥2), xi ∈ Nk(xj) or xj ∈ Nk(xi)
0, otherwise

(1)

where γ is a meta parameter that scales the kernel width.
Let D ∈ Rn×n be the graph degree matrix whose diagonal

elements are columns sum of affinity matrix [D]ii =
∑

j[A]ij.
SC clusters data points based on the eigenvectors of the graph
Laplacian. The graph normalized Laplacian matrix is defined as
follows:

L = I − D−
1
2 AD−

1
2 (2)

where I is the n × n identity matrix.
The normalized SC formulates the clustering problem through

the following optimization problem:

G∗
= arg min

G
trace(GTLG), (3)

where G is the class indicator matrix and GTG = I.
The objective function in Eq. (3) can be solved through the

general eigenvalue problem and that follows G∗ as the m eigen-
vectors of the Laplacian matrix L corresponding to its m-largest
eigenvalues.

Let each row of the matrix G∗ be a projected point in Rm, the
end data clusters are obtained by applying K-means to projected
data points. This leads to creating K non-overlapping sets of input
data samples.
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