
Journal of Systems Architecture 90 (2018) 85–93

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Detecting the phase behavior on cache performance using the reuse

distance vectors

Shan Shen, Ming Ling

∗ , Yongtao Zhang, Longxing Shi

National ASIC System Engineering Technology Research Center, Southeast University, Nanjing, Jiangsu 210096, China

a r t i c l e i n f o

Keywords:

Phase behavior
Reuse distance
Cache performance
Simulation points

a b s t r a c t

Previous studies proposed several code signatures, with large vector dimensions and time-consuming profiling
processes, to detect phase transitions of the overall processor performance. However, there still lacks an effective
and efficient method to detect and leverage the phase characteristics of memory access. In this paper, we propose
the reuse distance vector (RDV), a new metric that tightly coupled with the cache performance, to summarize
the phase behavior in the memory hierarchy. Different from the commonly seen huge dimensionality of other
code signatures, RDVs are measured at very low dimensions. Meanwhile, the profiling overhead can be further
reduced by our sampling technique. Based on RDVs, we can pick simulation points from the whole program

via a clustering method to act as the representative subset to reduce the time consumption of cycle accurate
simulations.

Using the simulation points found by RDVs, the average relative error of cache miss rate estimation is as low

as 1.08%, which outperforms the accuracies of BBVs and EIPVs by 79% and 22% (all compared methods use the
same number of simulation points that takes merely 0.4% of the whole program). Meanwhile, the average errors
of MLP and the cache miss service time are only 0.9% and 1.8%, respectively.

1. Introduction

Programs have different behaviors, which can be measured by differ-
ent performance metrics, during different code region execution. A same
code region can be executed several times when existing within a loop
or a frequent called subroutine. Thus, the periodic behavior, or phase
behavior, was observed and studied by many previous studies [1,2,6,8] .
A phase is a set of intervals with similar behavior in a program’s exe-
cution, regardless of their temporal adjacency [8] . Accurately capturing
phase behavior by ISA-level information, which is independent of the
underlying architectural details and performance, allows us to partition
an entire execution into phases. Phase information for the same applica-
tion can be reused when performing a design space exploration (DSE) or
guiding optimizations across different architecture configurations. Addi-
tionally, this phase information can be also applied to determine when
to do re-configuration for advanced self-adaptive micro-architectures,
such as caches [23–25,34] and pipelines [35] .

The existing phase detection methods first divide the entire program

execution into continuous time intervals (also called profiling intervals).
Then they collect specified instruction information as code signatures of
each interval. For example, a basic block [2] is defined as a single-entry,
single-exit section of code, i.e. the code section between two branches,
without any internal control flow. The execution stream of an interval

∗ Corresponding author.
E-mail addresses: shanshen@seu.edu.cn (S. Shen), trio@seu.edu.cn (M. Ling), ytz@seu.edu.cn (Y. Zhang), lxshi@seu.edu.cn (L. Shi).

is structured into a basic block vector (BBV), where each element in
the vector is the executed frequency of the corresponding basic block
in the program. Extended instruction pointer vectors (EIPVs) [6] are
similar to BBVs, but instead of capturing execution frequencies of basic
blocks, they capture execution frequencies of individual instructions.
Similarly, sparse conditional branch vectors (Sparse CBRVs) [10] count
the number of conditional branches in each execution interval.

Although the previous methods successfully detect and leverage the
phase behavior, they focus on the overall processor performance (e.g.,
IPC) rather than the memory system performance. Memory system de-
signers are eager to find the simulation points [2] , equipped with more
representativeness of memory access, to accurately evaluate the perfor-
mance of memory subsystem while keeping the simulation overhead
under the budget. On the other hand, for the self-adaptive memory ar-
chitectures, an accurate and efficient memory performance metric is also
needed to detect the phase changing of the memory performance [24] ,
instead of the overall processor performance which actually may mis-
lead the reconfiguring. Last but not least, even the same instructions
can have very different memory system behavior given different types
of program inputs [11] , previous approaches which simply consider in-
struction behavior cannot capture memory performance phase transi-
tions and will over-homogenize the program execution time.

https://doi.org/10.1016/j.sysarc.2018.09.001
Received 1 June 2018; Received in revised form 16 July 2018; Accepted 3 September 2018
Available online 13 September 2018
1383-7621/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysarc.2018.09.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2018.09.001&domain=pdf
mailto:shanshen@seu.edu.cn
mailto:trio@seu.edu.cn
mailto:ytz@seu.edu.cn
mailto:lxshi@seu.edu.cn
https://doi.org/10.1016/j.sysarc.2018.09.001

S. Shen et al. Journal of Systems Architecture 90 (2018) 85–93

Furthermore, due to the large dimensionality of BBVs and EIPVs, an
additional transformation must be applied. Direct hashing the original
data into a small-sized vector hurts the distinctiveness of signature vec-
tors [3] . Thus, in [2,6] , each signature vector with D elements needs to
be multiplied by a D ×M random projection matrix to reduce its size to
M . For the total N intervals, it needs up to D ×M ×N times of floating-
point multiplications. Moreover, storing such large vectors and the pro-
jection matrix wastes the memory resource even for an offline analysis.

To solve these problems, we propose the reuse distance vectors
(RDVs) to analyze phase behavior exhibiting in the memory hierarchy.
This paper further demonstrates the effectiveness and the efficiency of
RDVs by applying them to the simulation point selection. The contribu-
tions of this paper are:

• We propose the reuse distance vectors (RDVs), a low-dimensional
(16 dimensions in this paper) hardware-independent metric, to sum-
marize the memory behavior of an arbitrary section of program ex-
ecution. RDVs are collected at a low overhead by using straightfor-
ward operations and a random sampling technique.

• We study the memory phase behavior from three perspectives of
cache performance: the cache miss rate, the memory level paral-
lelism (MLP) and the cache miss service time (service time for short).
Through detailed experiments, we have proven that RDVs are not
only strongly correlated with cache misses, but also with MLP and
the service time as well.

• By using the RDVs, we demonstrate a unified method to select the
best simulation points for DSE of memory systems. The overall ac-
curacies of the performance predictions from the simulation points
found by our approach and those chosen by the prior methods are
evaluated. Meanwhile, the overheads of different signature extrac-
tions are also compared.

The rest of the paper is organized as follows. Prior studies are
summarized in Section 2 . Section 3 introduces the definition and col-
lection method of RDVs/sampled RDVs (SRDVs). We also show the
strong correlations between RDVs and the memory performance met-
rics. Section 4 describes our experimental setup. Section 5 compares the
performance of phase clustering based on the existing phase detection
methods, as well as the accuracies of simulation points found by them.
This section also analyzes the influences of vector dimensionality and
the information loss caused by our sampling approach. At last, we con-
clude this paper and introduce our future work in Section 6 .

2. Related works

Sherwood et al. first proposed BBVs [1] that measured the periodic
behavior in programs in terms of several different architectural metrics.
In the following work [2] , they used offline k-means clustering to clas-
sify the similar behavior execution intervals of the program into phases
(clusters), and selected the representative simulation points based on
the phase analysis to reduce the simulation workload. However, before
the clustering, BBVs must be multiplied by a random projection ma-
trix to reduce their dimensions to an acceptable range (as discussed in
Section 1). Sherwood et al. [3] and Lau et al. [4] also extended their
work to a hardware scheme to do the online phase tracking and predic-
tion with a sacrifice of precision. Perelman et al. [16] extended those
prior works to the scenarios of multi-threaded workloads.

Dhodapkar et al. [5] used instruction working set of the program

(i.e. the set of instructions executed in a fixed interval of time) to de-
tect phases. In [5] , a summary on phase detection methods was given.
However, it needs an extremely large bit vector [5] to contain all data
accessing information in the granularity used in this paper.

Davies et al. [6] proposed the EIPVs collected by Intel VTune
[18] Performance Analyzer to faithfully represent the program execu-
tion within a given interval. However, the drawbacks of EIPVs are the
same as those of [2] . Annavaram et al. [7] used a regression tree to clas-
sify the benchmarks into four quadrants based on their CPI variances.

Lau et al. [8] found that the information loss of sampled EIPVs weak-
ened the correlation between code signatures and hardware metrics in
[7] . They improved the sampled EIPV-based method by mapping each
EIP to its corresponding loop or procedure. Yet, the mapped EIPVs still
performed worse than the full BBVs in their experiments.

Sembrantet al. [10] proposed a new method called Conditional
BRanch Vectors (CBRV). Using Linux-perf_events [17] , they ex-
tracted the sparse CBRVs at extremely low overhead. They developed
ScarPhase, a new online phase detection library, to further reduce the
running time of the profiler. Not surprisingly, the predicted CPI had a
large error (the maximum error is larger than 20%) due to the sparse
sampling compared to our RDV-based method.

Regarding the memory system phase detection, Balasubramonian et
al. [9] detected phase changes by monitoring performance counters that
collect information of cache misses, CPI and branch frequencies. Ding
et al. [11] first proposed the LRU stack distance histogram (SDH) as a
data locality signature to predict the program behavior with different
data inputs. Shen et al. [12] leveraged Wavelets and Sequitur to build a
hierarchy of phase information to represent program’s behavior patterns
based on the LRU SDH. However, compared to the reuse distance extrac-
tion, collecting stack distance has a significantly larger overhead due to
the requirement of recording all unique addresses. Ipek et al. [13] dis-
cussed an online solution of phase detection for distributed shared mem-
ory systems by introducing data distribution vectors (DDVs). Unfortu-
nately, DDVs cannot work without the help of BBVs, which brings a
larger computation complexity and storage usage.

An orthogonal method to help memory system evaluation is trace
synthesis, which reconstructs the pattern of memory access after profil-
ing. Maeda et al. [36] introduced hierarchical reuse distance (HRD) to
represent the data locality and traffic at different cache block granular-
ities with good accuracies. But HRD model couldn’t provide the estima-
tion of IPC or other performance metrics.

In this paper, we propose a new code signature, reuse distance vec-
tors (RDV for short), based on the reuse distance (RD), which is widely
utilized in benchmark analyses [14,15] and cache analytical modeling
[20,21,38] for its low-cost extraction and effectiveness. Compared to
prior metrics, RDV is an efficient and more accurate code signature ded-
icated to the memory performance phase detection.

3. RDVs and phase behavior in the memory hierarchy

We introduce the concept of RDVs and describe how to collect them

in this section. To further lower the extracting overhead, a sampling ap-
proach for RDVs is also explained. In addition, by visualizing the phase
behavior of cache performance metrics, we will show the strong corre-
lations between RDVs and the memory phases.

3.1. Definition and collection of RDVs

Reuse distance. In this paper, a reuse distance (RD), defined same as
[21] , is computed as the number of memory accesses in a reuse interval,
where the reuse interval is the time duration between two successive
memory accesses to the same cacheline . 1 For example, a sequence of
memory references from left to right, ABCBCBA, 2 forms a reuse inter-
val of two ‘ A ’s, in which the RD of the second A is 5. A reuse distance
histogram (RDH) is distribution of RDs observed in a program within a
given time duration. The height of a bin RDH(k) indicates the number
of references that have a reuse distance of k . For the above example, the

1 Different from the work [34,36,37] , the term “reuse distance ” in this paper
is not equivalent to the LRU stack distance. The LRU stack distance is actually
the number of accesses to unique addresses made since the last reference to the
requested data.

2 All the addresses are cacheline-aligned in this paper. The sub-sequence BCB

and CBC also construct two and one smaller reuse intervals for the references B
and C respectively.

86

Download English Version:

https://daneshyari.com/en/article/11031612

Download Persian Version:

https://daneshyari.com/article/11031612

Daneshyari.com

https://daneshyari.com/en/article/11031612
https://daneshyari.com/article/11031612
https://daneshyari.com

