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a b s t r a c t 

Previous studies proposed several code signatures, with large vector dimensions and time-consuming profiling 
processes, to detect phase transitions of the overall processor performance. However, there still lacks an effective 
and efficient method to detect and leverage the phase characteristics of memory access. In this paper, we propose 
the reuse distance vector (RDV), a new metric that tightly coupled with the cache performance, to summarize 
the phase behavior in the memory hierarchy. Different from the commonly seen huge dimensionality of other 
code signatures, RDVs are measured at very low dimensions. Meanwhile, the profiling overhead can be further 
reduced by our sampling technique. Based on RDVs, we can pick simulation points from the whole program 

via a clustering method to act as the representative subset to reduce the time consumption of cycle accurate 
simulations. 

Using the simulation points found by RDVs, the average relative error of cache miss rate estimation is as low 

as 1.08%, which outperforms the accuracies of BBVs and EIPVs by 79% and 22% (all compared methods use the 
same number of simulation points that takes merely 0.4% of the whole program). Meanwhile, the average errors 
of MLP and the cache miss service time are only 0.9% and 1.8%, respectively. 

1. Introduction 

Programs have different behaviors, which can be measured by differ- 
ent performance metrics, during different code region execution. A same 
code region can be executed several times when existing within a loop 
or a frequent called subroutine. Thus, the periodic behavior, or phase 
behavior, was observed and studied by many previous studies [1,2,6,8] . 
A phase is a set of intervals with similar behavior in a program’s exe- 
cution, regardless of their temporal adjacency [8] . Accurately capturing 
phase behavior by ISA-level information, which is independent of the 
underlying architectural details and performance, allows us to partition 
an entire execution into phases. Phase information for the same applica- 
tion can be reused when performing a design space exploration (DSE) or 
guiding optimizations across different architecture configurations. Addi- 
tionally, this phase information can be also applied to determine when 
to do re-configuration for advanced self-adaptive micro-architectures, 
such as caches [23–25,34] and pipelines [35] . 

The existing phase detection methods first divide the entire program 

execution into continuous time intervals (also called profiling intervals). 
Then they collect specified instruction information as code signatures of 
each interval. For example, a basic block [2] is defined as a single-entry, 
single-exit section of code, i.e. the code section between two branches, 
without any internal control flow. The execution stream of an interval 
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is structured into a basic block vector (BBV), where each element in 
the vector is the executed frequency of the corresponding basic block 
in the program. Extended instruction pointer vectors (EIPVs) [6] are 
similar to BBVs, but instead of capturing execution frequencies of basic 
blocks, they capture execution frequencies of individual instructions. 
Similarly, sparse conditional branch vectors (Sparse CBRVs) [10] count 
the number of conditional branches in each execution interval. 

Although the previous methods successfully detect and leverage the 
phase behavior, they focus on the overall processor performance (e.g., 
IPC) rather than the memory system performance. Memory system de- 
signers are eager to find the simulation points [2] , equipped with more 
representativeness of memory access, to accurately evaluate the perfor- 
mance of memory subsystem while keeping the simulation overhead 
under the budget. On the other hand, for the self-adaptive memory ar- 
chitectures, an accurate and efficient memory performance metric is also 
needed to detect the phase changing of the memory performance [24] , 
instead of the overall processor performance which actually may mis- 
lead the reconfiguring. Last but not least, even the same instructions 
can have very different memory system behavior given different types 
of program inputs [11] , previous approaches which simply consider in- 
struction behavior cannot capture memory performance phase transi- 
tions and will over-homogenize the program execution time. 
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Furthermore, due to the large dimensionality of BBVs and EIPVs, an 
additional transformation must be applied. Direct hashing the original 
data into a small-sized vector hurts the distinctiveness of signature vec- 
tors [3] . Thus, in [2,6] , each signature vector with D elements needs to 
be multiplied by a D ×M random projection matrix to reduce its size to 
M . For the total N intervals, it needs up to D ×M ×N times of floating- 
point multiplications. Moreover, storing such large vectors and the pro- 
jection matrix wastes the memory resource even for an offline analysis. 

To solve these problems, we propose the reuse distance vectors 
(RDVs) to analyze phase behavior exhibiting in the memory hierarchy. 
This paper further demonstrates the effectiveness and the efficiency of 
RDVs by applying them to the simulation point selection. The contribu- 
tions of this paper are: 

• We propose the reuse distance vectors (RDVs), a low-dimensional 
(16 dimensions in this paper) hardware-independent metric, to sum- 
marize the memory behavior of an arbitrary section of program ex- 
ecution. RDVs are collected at a low overhead by using straightfor- 
ward operations and a random sampling technique. 

• We study the memory phase behavior from three perspectives of 
cache performance: the cache miss rate, the memory level paral- 
lelism (MLP) and the cache miss service time (service time for short). 
Through detailed experiments, we have proven that RDVs are not 
only strongly correlated with cache misses, but also with MLP and 
the service time as well. 

• By using the RDVs, we demonstrate a unified method to select the 
best simulation points for DSE of memory systems. The overall ac- 
curacies of the performance predictions from the simulation points 
found by our approach and those chosen by the prior methods are 
evaluated. Meanwhile, the overheads of different signature extrac- 
tions are also compared. 

The rest of the paper is organized as follows. Prior studies are 
summarized in Section 2 . Section 3 introduces the definition and col- 
lection method of RDVs/sampled RDVs (SRDVs). We also show the 
strong correlations between RDVs and the memory performance met- 
rics. Section 4 describes our experimental setup. Section 5 compares the 
performance of phase clustering based on the existing phase detection 
methods, as well as the accuracies of simulation points found by them. 
This section also analyzes the influences of vector dimensionality and 
the information loss caused by our sampling approach. At last, we con- 
clude this paper and introduce our future work in Section 6 . 

2. Related works 

Sherwood et al. first proposed BBVs [1] that measured the periodic 
behavior in programs in terms of several different architectural metrics. 
In the following work [2] , they used offline k-means clustering to clas- 
sify the similar behavior execution intervals of the program into phases 
(clusters), and selected the representative simulation points based on 
the phase analysis to reduce the simulation workload. However, before 
the clustering, BBVs must be multiplied by a random projection ma- 
trix to reduce their dimensions to an acceptable range (as discussed in 
Section 1 ). Sherwood et al. [3] and Lau et al. [4] also extended their 
work to a hardware scheme to do the online phase tracking and predic- 
tion with a sacrifice of precision. Perelman et al. [16] extended those 
prior works to the scenarios of multi-threaded workloads. 

Dhodapkar et al. [5] used instruction working set of the program 

(i.e. the set of instructions executed in a fixed interval of time) to de- 
tect phases. In [5] , a summary on phase detection methods was given. 
However, it needs an extremely large bit vector [5] to contain all data 
accessing information in the granularity used in this paper. 

Davies et al. [6] proposed the EIPVs collected by Intel VTune 
[18] Performance Analyzer to faithfully represent the program execu- 
tion within a given interval. However, the drawbacks of EIPVs are the 
same as those of [2] . Annavaram et al. [7] used a regression tree to clas- 
sify the benchmarks into four quadrants based on their CPI variances. 

Lau et al. [8] found that the information loss of sampled EIPVs weak- 
ened the correlation between code signatures and hardware metrics in 
[7] . They improved the sampled EIPV-based method by mapping each 
EIP to its corresponding loop or procedure. Yet, the mapped EIPVs still 
performed worse than the full BBVs in their experiments. 

Sembrantet al. [10] proposed a new method called Conditional 
BRanch Vectors (CBRV). Using Linux-perf_events [17] , they ex- 
tracted the sparse CBRVs at extremely low overhead. They developed 
ScarPhase, a new online phase detection library, to further reduce the 
running time of the profiler. Not surprisingly, the predicted CPI had a 
large error (the maximum error is larger than 20%) due to the sparse 
sampling compared to our RDV-based method. 

Regarding the memory system phase detection, Balasubramonian et 
al. [9] detected phase changes by monitoring performance counters that 
collect information of cache misses, CPI and branch frequencies. Ding 
et al. [11] first proposed the LRU stack distance histogram (SDH) as a 
data locality signature to predict the program behavior with different 
data inputs. Shen et al. [12] leveraged Wavelets and Sequitur to build a 
hierarchy of phase information to represent program’s behavior patterns 
based on the LRU SDH. However, compared to the reuse distance extrac- 
tion, collecting stack distance has a significantly larger overhead due to 
the requirement of recording all unique addresses. Ipek et al. [13] dis- 
cussed an online solution of phase detection for distributed shared mem- 
ory systems by introducing data distribution vectors (DDVs). Unfortu- 
nately, DDVs cannot work without the help of BBVs, which brings a 
larger computation complexity and storage usage. 

An orthogonal method to help memory system evaluation is trace 
synthesis, which reconstructs the pattern of memory access after profil- 
ing. Maeda et al. [36] introduced hierarchical reuse distance (HRD) to 
represent the data locality and traffic at different cache block granular- 
ities with good accuracies. But HRD model couldn’t provide the estima- 
tion of IPC or other performance metrics. 

In this paper, we propose a new code signature, reuse distance vec- 
tors (RDV for short), based on the reuse distance (RD), which is widely 
utilized in benchmark analyses [14,15] and cache analytical modeling 
[20,21,38] for its low-cost extraction and effectiveness. Compared to 
prior metrics, RDV is an efficient and more accurate code signature ded- 
icated to the memory performance phase detection. 

3. RDVs and phase behavior in the memory hierarchy 

We introduce the concept of RDVs and describe how to collect them 

in this section. To further lower the extracting overhead, a sampling ap- 
proach for RDVs is also explained. In addition, by visualizing the phase 
behavior of cache performance metrics, we will show the strong corre- 
lations between RDVs and the memory phases. 

3.1. Definition and collection of RDVs 

Reuse distance. In this paper, a reuse distance (RD), defined same as 
[21] , is computed as the number of memory accesses in a reuse interval, 
where the reuse interval is the time duration between two successive 
memory accesses to the same cacheline . 1 For example, a sequence of 
memory references from left to right, ABCBCBA, 2 forms a reuse inter- 
val of two ‘ A ’s, in which the RD of the second A is 5. A reuse distance 
histogram (RDH) is distribution of RDs observed in a program within a 
given time duration. The height of a bin RDH( k ) indicates the number 
of references that have a reuse distance of k . For the above example, the 

1 Different from the work [34,36,37] , the term “reuse distance ” in this paper 
is not equivalent to the LRU stack distance. The LRU stack distance is actually 
the number of accesses to unique addresses made since the last reference to the 
requested data. 

2 All the addresses are cacheline-aligned in this paper. The sub-sequence BCB 

and CBC also construct two and one smaller reuse intervals for the references B 
and C respectively. 
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