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HIGHLIGHTS

« A novel semisupervised soft sensing approach for chemical processes is proposed.
« A Dirichlet process mixture of Gaussians is proposed for regression application.
« A VI-based learning algorithm is developed for the proposed fully Bayesian model.
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ABSTRACT

Data driven soft sensors have found widespread applications in chemical processes for predicting those
important yet difficult-to-measure quality variables. In the vast majority of chemical processes, relation-
ships among primary and secondary variables are nonlinear, and process data inherently contain uncer-
tainties and present strongly non-Gaussian characteristics. In addition, labeled samples are often scarce
due to certain technical or economical difficulties. These process and data characteristics impose chal-
lenges on high-accuracy soft sensors. To deal with these issues, this paper proposes a soft sensing
approach referred to as the semisupervised Dirichlet process mixture of Gaussians (SSDPMG). In the
SsDPMG, a fully Bayesian model structure is first designed to enable semisupervised tasks that are suit-
able for regression applications. Subsequently, a Bayesian learning procedure for the SSDPMG is devel-
oped based on variational inference framework, where information contained in both labeled and
unlabeled samples are extracted. Case studies are carried out on one numerical example and two real-
life chemical processes to evaluate the performance of the proposed approach. The results demonstrate

that the SsDPMG is an effective soft sensing approach with promising application foreground.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In chemical processes, in additional to those easy-to-measure
variables such as pressure, temperature, flow rate and liquid/mate-
rial level, there are a class of product quality-related variables
called primary variables such as concentration, melt index, and
octane number. These primary variables are usually of significant
importance for quality control and operation safety, but are diffi-
cult to measure. Acquisitions of them are conventionally realized
via offline laboratory analysis or online analyzer, which may intro-
duce significant delay (hours or even longer) or tremendous invest-
ment cost, raising challenges to real-time process monitoring and
closed-loop control (Ge et al., 2017; Yu, 2012; Wang et al., 2010).

Soft sensors, which are also known as virtual sensors or inferen-
tial sensors, are able to resolve the above mentioned difficulties
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associated with the lab analysis or hardware analyzer. They can
economically provide delay-free estimations for primary variables
using secondary variables (i.e., those easy-to-measure variables)
and mathematical models (Shao and Tian, 2012; Yan et al.,
2017). Owing to less dependence on in-depth expert knowledge
and availability of amounts of process data, compared to model-
driven soft sensors, data-driven ones have received much attention
and found increasingly wide applications in many industrial fields
such as chemical engineering, biological engineering, metallurgical
engineering, and so forth (Ge et al., 2017; Yuan et al., 2018). During
past decades, a variety of data-driven soft sensors have been devel-
oped, and one can refer to Kadlec et al. (2009, 2016) for compre-
hensive reviews of popular data-driven soft sensing algorithms
as well as their industrial applications.

Due to reasons such as complex process mechanisms, multiple
manufacturing phases and/or operating conditions, the vast major-
ity of chemical processes are nonlinear, and process data present
strongly non-Gaussian characteristics (Yu, 2012; Xie et al., 2014;
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Cai et al., 2017). In addition, chemical processes are inherently
stochastic, which results from certain factors like noisy measure-
ment environments and transmission disturbances (Yuan et al.,
2018; Zhou et al., 2014; Yuan et al., 2017). It is desirable to account
for these process characteristics when developing soft sensor mod-
els, which however raises challenges to traditional soft sensing
approaches. For example, some popular multivariate statistical
models such as those based on principal component analysis
(PCA) and partial least squares (PLS) could not capture the nonlin-
ear relationships among primary and secondary variables.
Although kernelized PCA/PLS and other nonlinear function approx-
imators such as support vector regression (SVR) and back propaga-
tion neural networks (BPNN) can deal with process nonlinearities,
they are not good at modeling process uncertainties. Specifically,
the deterministic SVR and BPNN do not treat process variables as
random variables, and thereby they could provide only point esti-
mations of primary variables. However, it is desirable to provide
not only point estimations but also estimation uncertainties, which
could be very useful for many purposes such as abnormal sample
classification, reliable online model update, and online hardware
analyzer calibration Liu et al. (2010),Kaneko et al. (2011). In addi-
tion, it is difficult for SVR and BPNN to deal with the issue of miss-
ing value, which can be dealt with more easily by probabilistic
modeling approaches based on expectation-maximization (EM)
algorithm or variational EM algorithm (Yuan et al., 2017).

In contrast, Gaussian mixture models (GMM) is capable of
simultaneously dealing with those process characteristics (i.e.,
the non-Gaussianity, nonlinearity as well as randomness) by
approximating any complex non-Gaussian distributions with finite
number of Gaussian distributions (Yu and Qin, 2008). Therefore,
GMM and its variations have recently established themselves as
widely adopted soft sensing approaches (Yu, 2012; Grbic et al.,
2013; Yuan et al, 2014; Xiong et al., 2016; Wang et al., 2016;
Chan and Chen, 2017; Mei et al., 2017; Zhu et al., 2017). To con-
struct a GMM-based soft sensor, two tasks should necessarily be
completed. The first one is to learn model parameters including
mixing coefficients, mean vectors and covariance matrices for each
Gaussian component (GC). The EM (Dempster et al., 1977) algo-
rithm is commonly used to obtain point estimates of model param-
eters for the standard GMM where model parameters are treated
as deterministic variables rather than random variables. However,
the EM algorithm aims to maximize the likelihood function and
thus easily gets caught into local minimum and suffers from over-
fitting. For Bayesian GMM (BGMM) which randomizes model
parameters and penalizes model complexity by integrating them
out, the Monte Carlo Markov Chain (MCMC) (Rasmussen, 2000)
and variational inference (VI) (Bishop, 2006) are usually used to
learn posterior distributions over model parameters instead of
their point estimates. Even though the MCMC provides a systemat-
ical way for learning of Bayesian models, it can be prohibitively
slow and its convergence is difficult to detect (Bishop, 2006; Blei
and Jordan, 2006). As a result, the MCMC is often limited to small
scale problems. Such drawbacks of the MCMC can be overcome by
the VI, which transforms the parameter learning task into a func-
tional optimization problem. Note that some relaxation such as
factorization approximation is usually necessary for the VI to find
tractable solutions.

The other task that has to be finished for GMM is model selec-
tion, i.e., to select the number of Gaussian components (GCs).
Insufficient GCs result in underfitting while excessive GCs lead to
overfitting. Therefore, appropriately determining the number of
GCs is of crucial significance for GMM-based soft sensors to
achieve satisfying performance. There are various methods that
can perform model selection for mixture models, which can gener-
ally be classified into two categories, namely criterion-based and
Bayesian methods. In the first group, the optimal number of GCs

is determined as the one that can minimize some criteria such as
Akaike information criterion (AIC) (Yan et al., 2017), Bayesian
information criterion (BIC) (Bourouis et al., 2014), absolute incre-
ment log-likelihood (AIL) (Yuan et al., 2014), Bayesian Ying-Yang
index (BYYI) (Choi et al., 2005), minimum message length (MML)
(Bouguila, 2012), pseudolikelihood information criterion (PLIC)
(Stanford and Raftery, 2002), etc. This kind of model selection
approaches could be highly computationally demanding, as they
need to traverse all candidate numbers of GCs. In Bayesian meth-
ods, the mixing coefficients of GCs are treated as random variables,
and their posterior distributions are learned and used for model
selection. There are two representative strategies within this type
of methods, i.e., parametric and nonparametric ones. In parametric
methods, for example the variational mixture of Gaussians (VMG)
presented in Bishop (2006), the number of GCs can be set as rela-
tively large value, and contributions of superfluous GCs are driven
to be sufficiently tiny. In contradiction to parametric methods,
nonparametric ones assume the data are generated from a Dirich-
let process, resulting in the Dirichlet process mixture models
(DPMM) that are composed of infinite number of components
(Zhu et al,, 2017; Blei and Jordan, 2006; Lai et al., 2018). Based
on studies on the VMG and DPMM (Zhu et al., 2017; Bishop,
2006; Blei and Jordan, 2006; Lai et al., 2018), we can see that the
traversal of numbers of GCs is no longer necessary, as model selec-
tion and parameter learning can be finished within one training
round. Moreover, compared to the VMG, the DPMM theoretically
doesn’t need to know the number of GCs.

In soft sensor applications, collected samples are usually par-
tially labeled as labeling samples could be expensive due to high
investment of mass spectrometer, or with large delay introduced
by time-consuming laboratory analysis. Therefore, data-driven soft
sensor modeling is essentially a semisupervised task with rare
labeled samples and large amounts of unlabeled samples (Yan
et al., 2016), which may lead to difficulties for GMM-based soft
sensors in both parameter learning and model selection in the sce-
nario of insufficient labeled samples. Specifically, the EM-based
parameter learning by maximizing the likelihood function would
suffer from overfitting and numerical issues. For model selection,
without the support of sufficient samples, the commonly used cri-
teria BIC is prone to penalize model complexity unduly and leads
to biased results, while the best model suggested by the AIC tends
to overfit (Bishop, 2006; Zhu et al., 2015; Burnham and Anderson,
2004). Despite that the VI-based learning schemes such as the
VMG (Bishop, 2006) and DPMM (Zhu et al., 2017; Blei and
Jordan, 2006; Lai et al., 2018) are able to alleviate the issue of over-
fitting, insufficient labeled samples may still prevent them from
achieving satisfying performance.

Semisupervised soft sensors that make use of both labeled and
unlabeled data have been proven effective in remedying the limi-
tation of insufficiency of labeled samples. However, at the learning
stage, conventional GMM-based soft sensors are either unsuper-
vised (Yu, 2012; Grbic et al, 2013; Xiong et al., 2016; Wang
et al., 2016; Chan and Chen, 2017) or supervised (Yuan et al.,
2014; Mei et al., 2017; Zhu et al., 2017), failing to perform semisu-
pervised task due to the structure of conventional GMM. Even
though some semisupervised GMM and its extensions, such as
semisupervised GMM (Yan et al., 2017; Xing et al., 2013), semisu-
pervised variational GMM (Yang et al., 2017) and semisupervised
DPMM (Kimura et al., 2009), have been developed, they are used
for classification purpose and unable to develop predictive soft
sensors which are regression models. Therefore, in this paper we
propose a novel soft sensor-oriented SSDPMG (i.e., semisupervised
Dirichlet process mixture of Gaussians) to resolve the issues dis-
cussed in the above paragraph which result from insufficient
labeled samples. Our main contributions are summarized as
follows:
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