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a b s t r a c t 

Hypercube network is one of the most important and attractive network topologies so far. In this pa- 

per, we consider the scaling for first- and second-order network coherence on the hypercube network 

controlled by a weight factor. Our objective is to quantify the robustness of algorithms to stochastic 

disturbances at the nodes by using a quantity called network coherence which can be characterized as 

Laplacian spectrum. Network coherence can capture how well a network maintains its formation in the 

face of stochastic external disturbances. Firstly, we deduce the recursive relationships of its eigenvalues 

at two successive generations of Laplacian matrix. Then, we obtain the Laplacian spectrum of Laplacian 

matrix. Finally, we calculate the first- and second-order network coherence quantified as the sum and 

square sum of reciprocals of all nonzero Laplacian eigenvalues by using Squeeze Theorem. The obtained 

results show that the network coherence depends on generation number and weight factor. Meanwhile, 

the scalings of the first- and second-order network coherence of weighted hypercube decrease with the 

increasing of weight factor r , when 0 < r < 1. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the past decade, the study of networks associated with com- 

plex systems has received the attentions of researchers from dif- 

ferent scientific fields, such as physics, mathematics. Previous re- 

search mainly focus on binary network, and there are few research 

on weighted network. Weighted networks are extension of net- 

works or graphs [1–3] , in which the edge between nodes i and 

j is associated with a variable w ij , called the weight. Practical re- 

alizations of weights in real networks range from the number of 

passengers traveling yearly between two airports in airport net- 

works [4] , to the traffic measure in packets per unit time between 

routers in the Internet [5] or the intensity of predator-prey inter- 

actions in ecosystems [6] . Hence it is necessary for a modeling ap- 

proach that can capture the effects of weighted characteristics on 

complex dynamics. One of the innovation in this paper is the use 

of the weight factor, we believe that this innovation will open new 

perspectives for some studies based on binary networks. 

Distributed consensus algorithms are important tools in the do- 

mains of multiagent systems and the vehicle platooning problem 

[7–9] as a means by which agents can reach and maintain agree- 
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ment on quantities such as heading, velocity, and inter-vehicle 

spacing using only local communication. In these settings, it is also 

important to consider how robust these algorithms are to external 

disturbances in addition to verifying the correctness of distributed 

consensus algorithms. For the dynamical processes on complex 

network, there are some specific applications, such as the study 

of SIS model with an infective vector on annealed networks and 

the study of SIR dynamics on quenched networks [10,11] . Several 

recent works have studied the robustness of distributed consen- 

sus algorithms for systems with first- and second-order dynam- 

ics according to an H 2 norm. This norm is a quantification of the 

network coherence and can capture how well a network main- 

tain its formation when facing stochastic external disturbances. 

For systems with first-order dynamics, it has been shown that 

the H 2 norm can be characterized by the trace of the pseudo- 

inverse of the Laplacian matrix [12–15] . This value has significant 

meaning not just in consensus systems, but in electrical networks 

[16,17] , random walks [18] , and molecular connectivity [19] . For the 

second-order case, the H 2 norm is also determined by the spec- 

trum of the Laplacian. For example, Bamieh et al. proposed an 

asymptotic analysis of network coherence for the first- and second- 

order consensus algorithms in torus and lattice networks according 

to number of nodes and network dimension [15] and then Patter- 

son and Bamieh gave the first- and second-order consensus algo- 

rithms in networks with stochastic disturbances [20] . 
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The first- and second-order network coherence quantified as 

the sum and square sum of reciprocals of all nonzero Laplacian 

eigenvalues. Our recent works [21,22] gave scalings for the H 2 

norm of first- and second-order consensus algorithms in weighted 

small-world networks and weighted iteration trees. These two 

works have some similarities, such as the obtained exact expres- 

sions of the network coherence by calculating. However, the an- 

alytical determination of Laplacian spectrum and the calculation 

about the sum of reciprocals of all nonzero Laplacian eigenvalues 

are tedious, even the numerical calculation of the Laplacian eigen- 

values is limited by the order of the graph and non-practical for 

large networks [23–25] . In this paper, we introduce a weighted 

hypercube based on binary hypercube and obtained the scalings 

of first- and second-order network coherence. The leading term of 

network coherence can be obtained by using Squeeze Theorem, 

which bypasses quite a lot of sophistical mathematical analysis. 

That is to say, this method greatly simplifies the process of cal- 

culation which is another innovation point in this paper. 

The organization of this paper is as follows. In Section 2 , we in- 

troduce the definition of network coherence. In Section 3 , we give 

the model of the weighted hypercube network. In Section 4 , we 

obtain the relationship of Laplacian eigenvalues at two successive 

generations and compute the network coherence of the weighted 

hypercube. Finally, we obtain the scalings of the first- and second- 

order network coherence. In Section 5 , we draw a conclusion. 

2. Network coherence 

We consider linear first-order consensus over a network mod- 

eled by a weighted network G 

w with N nodes and E edges. Let 

W and S be the weighted adjacency matrix and weighted diago- 

nal degree matrix of G 

w . The Laplacian matrix of the network G 

w 

is denoted by L and is defined as L = S − W . Our objective is to 

investigate consensus dynamics in a linear dynamical system with 

additive stochastic disturbances, which is characterized as network 

coherence by the Laplacian spectrum. We capture this robustness 

using a quantity that we call network coherence. Next, We will re- 

view the definition of first- and second-order network coherence 

in the system dynamics. 

2.1. Coherence in networks with first-order dynamics 

For the first-order consensus, at time t , each node j has a sin- 

gle state x j ( t ). And the state of the overall system at time t which 

is given by the vector x ( t ) ∈ R N . Each node state suffers stochastic 

disturbances and the goal is to let the nodes maintain consensus 

at the mean of their current states and the dynamics of each node 

in the network is defined as follows: 

˙ x (t) = −Lx (t) + ω(t) , (1) 

where x ( t ) ∈ R N is the state vector of network, ω( t ) is an N -vector 

of independent Gaussian white noise stochastic processes and L is 

the Laplacian matrix. 

Network coherence quantifies the steady-state variance of these 

fluctuations and it can measure the robustness of the consensus 

process to the additive noise. If network with small steady-state 

variance have high network coherence, that is it has more robust 

to noise than networks with low coherence [28] . One can obtain 

the variance of these fluctuations in the first-order consensus sys- 

tems from the definition of network coherence. 

The first-order network coherence is defined as the mean and 

steady-state variance of the deviation from the mean of the current 

nodes states 

H F O := lim 

t→∞ 

1 

N 

N ∑ 

j=1 

var 

{ 

x j (t) − 1 

N 

N ∑ 

k =1 

x k (t) 
} 

. (2) 

The output of the system (1) can be defined as 

y (t) = Jx (t) , (3) 

where J is the projection operator J = I − 1 
N 11 T , with 1 the N -vector 

of all ones. H FO is given by the H 2 norm of the system defined in 

Eqs. (1) and (3) , 

H F O = 

1 

N 

tr 

(∫ ∞ 

0 

exp (−L T t) J exp (−Lt) dt 

)
. (4) 

Suppose L is the Laplacian matrix of connected graph with eigen- 

values 0 = λ1 < λ2 ≤ · · · ≤ λN . We can find that H FO is fullly deter- 

mined by the laplacian spectrum of L [26,27] . Thus, the first-order 

network coherence is 

H F O = 

1 

2 N 

N ∑ 

i =2 

1 

λi 

. (5) 

2.2. Coherence in networks with second-order dynamics 

Similarly, for the second-order consensus, each node j has two 

state variables x 1, j ( t ) and x 2, j ( t ) ( j = 1 , 2 , . . . , N). The state of the 

whole system is captured in x 1 ( t ) and x 2 ( t ) ( N -vectors). Nodes up- 

date their states based on the states of their neighbors in the net- 

work and they are also exposure to random external disturbances 

that enter through the x 2 ( t ) terms. Thus, the system dynamics 

are (
˙ x 1 (t) 
˙ x 2 (t) 

)
= 

(
0 I 

−L −L 

)(
˙ x 1 (t) 
˙ x 2 (t) 

)
+ 

(
0 

I 

)
w (t) , (6) 

where w ( t ) is a 2 N disturbance vector with zero-mean, uncorre- 

lated second-order processes and unit variance. L still is the Lapla- 

cian matrix. 

It is similar to the first-order network coherence and the 

second-order network coherence is the mean, steady-state variance 

of the deviation from the average of x 1 ( t ), 

H SO = lim 

t→∞ 

1 

N 

N ∑ 

j=1 

var 

{ 

x 1 , j (t) − 1 

N 

N ∑ 

k =1 

x 1 ,k (t) 
} 

. (7) 

The output for the system (6) can be defined as 

y (t) = 

(
J 0 

)(x 1 (t) 
x 2 (t) 

)
, (8) 

where J is also the projection operator and the second-order net- 

work coherence is given by the H 2 norm of the system that de- 

fined by Eqs. (6) and (8) . Then, the value is also fully determined 

by the eigenvalues of the Laplcian matrix [15] . Thus, the second- 

order network coherence is 

H SO = 

1 

2 N 

N ∑ 

i =2 

1 

λ2 
i 

. (9) 

From the above analysis, for a weighted network, the network 

coherence can be obtained straightforwardly from Laplacian spec- 

trum. However, the analytical determination of this spectrum is 

difficult. Because the numerical calculation of Laplacian eigenval- 

ues is limited by the order of the graph and non-practical for large 

network. In the next section, we calculate the sum and square sum 

of reciprocals of all nonzero Laplacian eigenvalues by using the 

recursive relationship of its eigenvalues at two successive gener- 

ations and Squeeze Theorem. 

3. Model description 

Saad et al. proposed the hypercube is regarded as a graph. The 

hypercube is an undirected graph consisting of 2 g vertices labeled 

from 0 to 2 g − 1 and such that there is an edge between any two 
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