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a b s t r a c t 

In ecological modeling, seasonality can be represented as an alternation between environmental condi- 

tions. We consider a switching strategy that alternates between two undesirable dynamics and find that 

they can yield a desirable periodic behavior in the case of the Beverton–Holt, Ricker, and modified Ricker 

maps, which have been extensively used to model ecological populations. For the Ricker and modified 

Ricker models, we observe coexistence of attractors, which, under the same conditions, define basin of 

attractions, and the final dynamic behavior depends on the initial conditions. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Over the years, theoretical ecologists have modeled population 

dynamics using either discrete or continuous equation methods. In 

the former case, maps have been the method of choice [1–6] . In 

particular, the logistic map has played a central role in the devel- 

opment and understanding of complex dynamic systems [7] . Orig- 

inally, the logistic map has been used to study populations of non- 

overlapping generations, and is represented by the following rela- 

tion between the new generation (X n +1 ) and the old generation 

( X n ). 

X n +1 = f C (X n ) = C X n (1 − X n ) (1) 

Independently from ecological studies, for the last ten years, al- 

ternate dynamics strategies have been the center of attention due 

to the so-called Parrondo paradox [8–10] , where two losing games 

can be combined to yield a winning game. Furthermore, the idea 

that “lose + lose = win” has been extended to “chaos + chaos = pe- 

riodic” in one-dimensional maps [11–19] . In an extension of the 

so-called Parrondian games, we have analyzed the dynamics of the 

logistic map, where we represent two seasons by alternating two 

relevant parameter values. We have considered the case where the 

alternation of undesirable dynamic behaviors yield a desirable be- 

havior in the context of seasonality in the logistic map, where we 

alternate the parameter values between even and odd iterations. 

For example, the alternation between a parameter that would drive 

the logistic map to extinction, and a parameter that would drive 

the logistic map to chaos yields stable oscillations. So, in the con- 
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text of population dynamics, we have considered cases where “un- 

desirable + undesirable = desirable” dynamic behaviors occur as a 

result of a simple alternation of parameters [17–19] . 

In our present discussion, we extend our simple seasonality 

modeling strategy to several one-dimensional ecologically relevant 

maps and find that the “undesirable + undesirable = desirable”, as 

well as the “chaos + chaos = periodic” behaviors are not unique 

to the logistic map. In Section 2 , we consider a generalization of 

the Beverton–Holt map [20] , and in Section 3 , we analyze one of 

the most popular limits of this map, which some authors some- 

times refer to as the Ricker map [20] . In Section 4 , we consider 

three modified Ricker models [21] , and, in Section 5 , we discuss 

and summarize our results. 

2. Modified Beverton–Holt model 

The Beverton–Holt map has been used to model fish popula- 

tion dynamics, and it is considered as a useful map by ecologists 

[20,21] . In our analysis we start with the dimensionless map: 

X n +1 = 

C X n Exp[ −X n ] 

(1 + b(1 − Exp[ −X n ])) 
(2) 

where C is the most relevant parameter because larger values of 

b tend to stabilize the map’s dynamics. In our case, we consider 

three b values : 0, 1/2, and 1. In particular, b = 0 yields a simpler 

map, which some authors identify as the Ricker Model, which we 

consider in Section 3 . 

In our analysis, we start by constructing bifurcation diagrams 

for Eq. (2) and by identifying the parameter values associated with 

undesirable (extinction or chaos) dynamical behaviors. For exam- 

ple, in Figs. 1 and 2 , we depict the bifurcation diagram for b = 1 / 2 

and b = 1 . From these figures, we notice that as we increase the 
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Fig. 1. Modified Beverton–Holt Model for b = 1 / 2 . 

Fig. 2. Modified Beverton–Holt Model for b = 1.0. 

value of b , the C parameter values related to chaotic dynamics shift 

towards larger values. 

In the case of b = 1 / 2 , only values of C > 20 may show chaotic 

dynamics. In contrast, for b = 1 , the chaotic behavior occurs for C 

values greater than twenty four. Since we are interested in popu- 

lation extinction, we depict the bifurcation diagram for values of C 

less than twelve, where it is clear that for C ≤ 1, extinction is the 

only stable and physical solution. Hence, values of C less than or 

equal to unity imply an undesirable dynamical behavior. 

Next, we alternate the parameter values between even and odd 

iterations: 

X n +1 = 

⎧ ⎨ 

⎩ 

f C e (X n ) = 

C e X n Exp[ −X n ] 
(1+ b(1 −Exp[ −X n ])) 

if n even 

f C o (X n ) = 

C o X n Exp[ −X n ] 
(1+ b(1 −Exp[ −X n ])) 

if n odd 

(3) 

From Figs. 1 and 2 we can select values associated with chaotic 

behavior for C o , and use C e as a bifurcation parameter. From the 

resulting diagram, we can easily identify parameter values that, 

when alternated with C o , yield stable oscillations. For example, if 

we consider C o = 29 , which, as seen from Fig. 1 , yields chaotic tra- 

jectories, Eq. (2) yields a bifurcation diagram depicted in Fig. 3 . 

From Fig. 4 , we observe stable oscillations for values less than 

unity, and for values between 36.25 and 37. In the former, case 

the values are associated with extinction, while in the latter case, 

the values are associated with chaotic trajectories if we use Eq. (3) . 

Therefore, in one case, we have an example of “undesirable + un- 

desirable = desirable” while in the other case we observe that 

“chaos + chaos = periodic.” In contrast to other approaches, we 

construct bifurcation diagrams to find parameter values that, when 

alternated, yield stable trajectories. Our approach is straightfor- 

ward for discrete systems and yields intervals of valid parame- 

Fig. 3. Bifurcation diagram as a function of C e , with C o = 29 , and b = 1 / 2 for the 

Beverton–Holt map. 

Fig. 4. Bifurcation diagram as a function of C e , with C o = 29 , and b = 1 / 2 for the 

Beverton–Holt map. 

ter values rather than single values. A more dramatic example of 

“chaos + chaos = periodic” occurs for b = 1 / 2 , C o = 20 , and C e be- 

tween 24 and 40, as depicted in Fig. 5 , as compared with Fig. 1 , al- 

though we still observe oscillations for values of C e less than unity. 

For completeness, we depict in Fig. 6 , bifurcation diagrams for 

b = 1 and C o = 28 . Comparing Figs. 2 and 6 , we find that values 

between 38 and 38.5 yield aperiodic oscillations when used in 

Eq. (2) , but, when used with Eq. (3) , the same values yield stable 

oscillations, which is another example of “‘chaos + chaos = peri- 

odic”. Finally, from Fig. 2 , we consider C o = 39 , which yields stable 

oscillations when using Eq. (3) . In Fig. 7 , we depict the bifurca- 

tion diagrams for C o = 39 , and b = 1 . In this case, we want to fo- 

cus on the interval 0 < C e < 12. If we compare Figs. 2 and 7 , the 

effect of alternate dynamics yields chaotic behavior around C e = 2 . 

Therefore, for C o = 39 and C o ≈ 2, we have a case of “periodic + pe- 

riodic = chaos,” another example of this case occurs for b = 1 / 2 , 

C o = 31 . 8 and C e between 7 and 16. 

In the limiting case, b = 0 , we recover a map referred to as the 

Ricker map: 

X n +1 = 

{ 

f C e (X n ) = C e X n Exp[ −X n ] if n even 

f C o (X n ) = C o X n Exp[ −X n ] if n odd 

(4) 

In Fig. 8 , we depict the bifurcation diagram for Eq. (4) for C o = C e , 

which can be compared with the diagrams in Figs. 1 and 2 . 

As before, we pick a C o value associated with a chaotic trajec- 

tory and alternate with C e , which we use as the bifurcation param- 

eter, as illustrated in Fig. 9 . From the bifurcation diagram, we can 

easily pick values of C e < 1 that correspond to “undesirable + un- 

desirable = desirable” dynamics to model seasonality. We can also 
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