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a b s t r a c t 

In this paper, a practical framework of symbolic vector space is applied to uncover the time-asymptotic 

evolutionary behaviors of cellular automata with majority memory. This work focuses on elementary cel- 

lular automata rules with majority memory (ECAMs) and Bernoulli-shift parameters σ = 1 , τ = 2 . The 

concepts of forward time −τ map and characteristic function are exploited to display the Bernoulli-shift 

features and modes. Particularly, it is rigorously verified that ECAMs rule 10 actually defines a Bernoulli- 

measure global attractor in the bi-infinite symbolic vector space. It is furthermore identified that ECAMs 

rule 10 possesses complicated symbolic dynamics; namely, it is endowed with temporal chaotic features 

as positive topological entropy and topologically mixing. Therefore, ECAMs rule 10 is chaotic on its global 

attractor according to definitions of both Li-York and Devaney. To this end, it should be underlined that 

the procedure proposed in this study is applied to other ECAMs rules with the same shifting mode, and 

the corresponding results are exhibited. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Cellular automata (CAs), originally designated by Stanislaw 

Ulam and John von Neumann in the 1940s, are a group of dy- 

namical systems whose time, space and states are all discrete. They 

have been confirmed useful both as theoretical models for present- 

ing chaos and complexity of non-linear dynamics and as specific 

applications in a broad range of scientific fields [1] . Based on their 

simple structures and displaying complex emergent behaviors, CAs 

are widely studied by a growing number of researchers to investi- 

gate their mathematical theory and practical application [2,23,25] . 

For instance, CAs were studied as a particular type of topological 

dynamical systems in the 1960s by Gustav A. Hedlund, who es- 

tablished the connection between symbolic dynamics and CAs and 

thereby proved many results in the light of this point of view [3] . 

Subsequently, nonlinear dynamical properties (i.e., subshift attrac- 

tors, chaotic dynamics) of some specific CAs, including surjective 

CAs, reversible CAs, permutive CAs, expansive CAs, and additive 

CAs, are deeply understood [4–9] . It is indeed that some properties 

are hard to check algorithmically [21,24] . Besides, some qualitative 

and quantitative classification schemes are proposed since the first 

attempt to classify the CAs rule space by Wolfram [2] . 
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In the 20 0 0s, the concepts and frameworks of CAs with mem- 

ory (CAMs) and the corresponding distinct memory functions were 

originally conceived by Alonso-Sanz [10] . These memories include 

exponential weighing, inverse memory, parity memory, and contin- 

uous valued memory, etc. Compared with conventional and stan- 

dard CAs, the new state of a cell in CAMs is determined by not 

only its neighborhood states at the preceding time step but also 

its states itself in the previous time steps. Therefore, the original 

local rules and the memory functions are integrated into new evo- 

lution rules for CAMs. More specifically, the memory function φ
can be defined as φ( x t−ν

i 
. . . x t−1 

i 
x t 

i 
) −→ s t 

i 
, where ν < t represents 

the degree of memory backwards, and the cell state s t 
i 

is a tran- 

sition state of the i − th cell position with memory backward up 

to a specific value ν . Subsequently, the original rule is applied as 

f ( . . . s t 
i −1 

s t 
i 

s t 
i +1 

. . . ) −→ x t+1 
i 

to execute the subsequent evolution. 

Note that f in CAMs makes it act by featuring each cell by a sum- 

mary of its past states from φ, and one can say that cells canalize 

memory to f [11] . 

Recently, many contributions about computational properties 

and dynamical classification of CAMs have been implemented 

along with other computer simulations. It is illustrated that CAMs 

can display complex behaviors in their time evolutions. For in- 

stance, a symbolic dynamics perspective to the empirical obser- 

vations concerning the elementary cellular automata with minor- 

ity memory is conducted in [15] . ECAs rules 126 and 30 with 
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the particular majority memory functions are endowed with rich 

and complicated glider phenomena [12,13] . A general method of 

obtaining reversible elementary CAs with memory (ECAMs) from 

reversible and permutative elementary CAs (ECAs) is offered in 

[22,27] . The effect of memory embedded in cells and links on a 

particular two-dimensional totalistic cellular automaton is qualita- 

tively studied in [26] . Besides, a qualitative classification of ECAMs 

was illustrated as strong, moderate and weak rules [11] . Thus, any 

ECAs class can be converted to any ECAMs class by adding an ap- 

propriate type of memory. By exploiting two fundamental homeo- 

morphisms in symbolic vector space, all ECAMs are furthermore 

grouped into 88 equivalence classes in the sense that different 

mappings in the same equivalence class are mutually topologically 

conjugate [14] . 

The most basic problem in studying the general dynam- 

ical systems is to understand and/or to predict their long- 

term dynamics as t → ∞ . Recently, chaotic properties of Chua’s 

Bernoulli-shift rules [18] and ECAs rule 12 with minority mem- 

ory [15] are investigated under the framework of symbolic 

dynamics. This paper is devoted to applying these analytical 

methods to describe a quantitatively nonlinear dynamics per- 

spective to ECAMs with Bernoulli-shift parameters σ = 1 and 

τ = 2 therein. Meanwhile, this work is imposed exclusively on 

ECAs rule 10 with the majority memory function, and the num- 

ber of cells performing memory is considered as ν = 3 ; that is, 

the temporary frameworks are determined by the past three 

states of each cell. For this regard, the majority function and 

ECAs rule 10 can be represented by the Boolean truth table 

as {0 0 0 → 0, 0 01 → 0, 010 → 0, 011 → 1, 100 → 0, 101 → 1, 110 → 1, 

111 → 1}, and {0 0 0 → 0, 0 01 → 1, 010 → 0, 011 → 1, 100 → 0, 101 → 0, 

110 → 0, 111 → 0}, respectively. In light of symbolic vector space 

and symbolic dynamics, chaotic dynamical properties of rule 10 

with majority memory ν = 3 (denoted simply as ECAMs rule 

10) on its global attractor are formulated in subtle detail, such 

as topological entropy and topologically mixing. Meanwhile, the 

subsystems of other ECAMs rules with the same shifting mode are 

exhibited along with their chaotic properties. 

The rest paper is arranged as follows. In Section 2, the basic 

concepts of symbolic vector space and ECAMs are prepared and in- 

troduced. In Section 3 , the qualitative properties of ECAMs rule 10 

are exhibited by exploiting the concepts of characteristic function 

and forward time −τ map. The necessary and sufficient conditions 

are identified for a subshift of finite type of ECAMs rule 10 in the 

bi-infinite symbolic vector space. Moreover, it is demonstrated that 

this subshift is its global attractor. In Section 4 , chaotic dynamics 

of this attractor is proved based on the existing results on subshifts 

of finite type of symbolic dynamics. It is indeed that ECAMs rule 

10 possesses the positive topological entropy and is topologically 

mixing on the global attractor, and thereby it is chaotic according 

to definitions of both Li-York and Devaney. Meanwhile, Bernoulli- 

shift dynamics of ECAMs rules 2, 6, 11, 14, 34, 38, 42, 43, 46, 58, 74, 

106, 130, 134, 138, 142, 162, 170 and 184 with the same shifting 

mode is summarized. In Section 5 , the main results of this work 

are highlighted, and the future studies are prospected. 

2. Symbolic vector space and ECAMs 

For a finite symbol set S , let S Z denote the state space consisting 

of all bi-infinite configurations. A definition of distance “d ” on S Z is 

given as 

d(x, x̄ ) = 

∞ ∑ 

i = −∞ 

1 

2 

| i | +1 
d i (x i , x̄ i ) , (1) 

where x , x̄ ∈ S Z , and d i ( · , · ) is a distance function on 

S as d i (x i , ̄x i ) = 

{
1 , i f x i � = x̄ i 
0 , i f x i = x̄ i 

. Now, the original symbolic 

Fig. 1. Typical spatio-temporal patterns governed by ECAMs rule 10 from random 

initial configuration. 

space S Z is extended to the symbolic vector space S Z n = { X = 

(x (1) T , x (2) T , . . . x (n ) T ) T | x ( j) ∈ S Z , j = 1 , 2 , . . . , n } , where T refers to 

the transpose operation. Since S n = 

∏ n 
i =1 S is a finite symbol set, 

one can use the same distance Eq. (1) on S Z n . It is noted that S Z n can 

be viewed as the product space of S Z , i.e., S Z n = 

∏ n 
i =1 S 

Z . Therefore, 

S Z n is a compact space. 

For any X ∈ S Z n , its column is denoted by X i = (x (1) 
i 

x (2) 
i 

. . . x (n ) 
i 

) T , 

and the block with size n × m over S is denoted by ⎛ ⎝ 

x (1) 
i 

. . . x (1) 
i + m −1 

. . . 

x (n ) 
i 

. . . x (n ) 
i + m −1 

⎞ ⎠ . Thus, the definition of left shift map σ on 

S Z n is given by [ σ (X )] i = X i +1 , for any X ∈ S Z n , i ∈ Z. In this paper, 

one special type of memory with ν = 3 is considered. This implies 

that n = 3 , and S Z n = S Z 3 . Therefore, the definition of global map F 10 

of ECAMs rule 10 is given as follows: for any X ∈ S Z 
3 
, 

F 10 : S Z 3 → S Z 3 , 

with 

F 10 

( 

x (1) 

x (2) 

x (3) 

) 

= 

( 

y (1) 

y (2) 

y (3) 

) 

, 

where y (1) = x (2) , y (2) = x (3) , y (3) = f 10 ◦ φ( x (1) T , x (2) T , x (3) T ) T . 

It follows from [14] that F 10 and σ are continuous, and there- 

fore (S Z 
3 
, F 10 ) and (S Z 

3 
, σ ) are both compact dynamical systems. The 

computer simulation of ECAMs rule 10 from a random initial con- 

dition is illustrated in Fig. 1 , where the white and black pixels rep- 

resent symbols 0 and 1, respectively. 

For a compact dynamical system (S Z n , F ) and a subset � ⊆ S Z n , 

if F ( �) ⊆�, then � is F -invariant. Moreover, if � is closed and 

F -invariant, then ( �, F ) or simply � is called a subsystem of F . 

Specifically, 
⋂ 

k ≥0 

F k (S Z n ) is a subsystem and is called the global at- 

tractor of F . Besides, let A be a set of some finite blocks with the 

same size n × m over S , and 

� = �A 

= { X = (x (1) T , x (2) T , . . . x (n ) T ) T ∈ 

S Z n | 
⎛ ⎝ 

x (1) 
i 

. . . x (1) 
i + m −1 

. . . . . . . . . 

x (n ) 
i 

. . . x (n ) 
i + m −1 

⎞ ⎠ ∈ A , ∀ i ∈ Z} . This construction method 

guarantees that �A 

is a subsystem (or subshift) of σ , and A is 

said to be the determinative block system of �. 
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