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a b s t r a c t 

Analysis and control of fractional order (FO) nonlinear systems is a challenging problem. In earlier works, 

as highlighted in literature, stability conditions for the FO LTI systems are analytically derived and these 

results are extended to formulate LMI conditions to express the stability of the FO LTI systems. In present 

work, design of full order and reduced order observers for imperfect fractional order nonlinear systems 

is presented. Imperfections in real system are silent dynamics and can be modeled as unknown input. 

To design observer for such system, unknown input observer (UIO) design concepts are used and LMI 

conditions for the existence of observer are analytically derived. For this purpose, Differential Mean Value 

(DMV) theorem is used and nonlinear term in the error dynamics is alternatively expressed in appropriate 

equivalent form. As a result, error dynamics evolves as Linear Parameter Varying (LPV) system and then 

stability results for FO LTI systems are extended to stabilize FO nonlinear error dynamical systems. LMI 

conditions for the existence of unknown input observer for the two cases 0 < α < 1 and 1 < α < 2 are 

analytically derived. Feasible solution of LMI gives the observer design matrices directly. Finally, results 

of simulation are presented to authenticate the proposed approach. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The idea of fractional calculus is as old as the integer order cal- 

culus [1] . In fractional order systems, the order α of the system 

is a real number in the range (0, 2). For integer order LTI system 

complete left half of the s-plane is the stability region. For com- 

mensurate FO LTI systems, stability region is a function of order α. 

A FO LTI system is stable if and only if eigenvalues of system ma- 

trix in the complex plane lie outside the angular sector defined by 

angles ±απ /2 [2] . From the point of view of stability, the range 

of α is divided into two parts i.e. 1 < α < 2 and 0 < α < 1. For the 

first case, stability region is a convex set while for the second case, 

it turns out as non-convex and thus the two cases are dealt dif- 

ferently. Stability of FO LTI system using root locus technique is 

investigated in [3] , while BIBO stability aspect is addressed in [4] . 

Stability properties, modeling issues, controllability and observabil- 

ity aspects of FO systems have been discussed in [5–7] . Matignon’s 

theorem is fundamental to many stability results for FO systems. 

Matignon’s theorem is extended to the fractional systems with or- 

der 1 < α < 2 in [8] . Stability region in this case is convex set and 

thus LMI stability condition is directly derived. For the systems 
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with order 0 < α < 1, stability region is non-convex, however LMI 

condition for the stability of such system is also given by identify- 

ing the instability domain [8,9] . LMI conditions for stability of the 

FO interval systems are derived in [10,11] . In view of latest devel- 

opments, new proof of Matignon’s theorem [7] valid for fractional 

order in the range 0 < α < 2 and independent of fractional deriva- 

tive definition is given in [12] . 

In system modeling, frequency domain experiments are per- 

formed for system identification. From such experiments, many 

systems like heat conduction [13] , transmission line model [14] , bi- 

ological systems [15] and financial systems [16] are found to ex- 

hibit fractional order dynamics and can be modeled more pre- 

cisely using fractional order systems. Another electrical element 

called fractance, which has fractional impedance and properties in- 

termediate between resistance and capacitance, is used to model 

the dynamics of the circuits more precisely [17] . Fractional or- 

der models for chaotic systems like Chua [18] , Chen [19] , L ̈u [20] , 

Rossler [21] and Volta’s [22] have also been developed over the 

period of time. Chaotic systems are special type of nonlinear sys- 

tems which exhibit aperiodic oscillations. Minimum fractional or- 

der α for which chaotic behavior sustains is analytically derived in 

[23,24] . The problems of stabilization and synchronization of frac- 

tional order chaotic systems have been discussed in [25–28] . For 

chaotic systems, chaos synchronization is an important aspect es- 

pecially from secure communication point of view and has been 
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studied in depth. In chaos synchronization slave system is made 

to mimic the behavior of master chaotic system. For fractional or- 

der systems, observer based chaotic system synchronization using 

scalar signal and its application to secure communication are dis- 

cussed in [29,30] . 

To mimic and predict the behavior of real world systems, math- 

ematical models based on integer or fractional order description 

are popularly used. However, performance of models deviate from 

the real systems, owed to the fact that real world systems have im- 

perfections which are not modeled. Such systems are categorized 

as imperfect systems and have attracted the interest of researchers 

recently [31] . These imperfections stem from parasitic effects, in- 

efficient manufacturing process and unknown perturbations [32] . 

These imperfections, called silent dynamics, play significant role in 

deciding the quality of the dynamics of the real systems. Design 

of observer to estimate the states of the imperfect system, without 

considering the effect of silent dynamics, will lead to inaccurate re- 

sults. Imperfections in systems can be modeled as unknown input. 

Unknown input observer (UIO) is an important class of observers 

which can estimate the states of the system when system is ex- 

cited by some unknown input [33] . Besides this, UIO find their ap- 

plication in robust fault detection [34] and secure communication 

[35] . UIO design was first proposed in [36] using geometric con- 

cepts. Necessary rank condition for the existence of observer, pop- 

ularly known as observer matching conditions, are given in [37] . 

LMI conditions for the existence of UIO are derived in [38] . Design 

of full order FO UIO is proposed by Darouach in [39] . Theory of Un- 

known Input Observers is also extended to fractional order linear 

systems. Design methodology of UIO for FO LTI system is proposed 

in [40] , wherein existence conditions for the proposed observer 

and LMI condition for the design of observer matrices are given. 

UIO for nonlinear systems using Lipschitz constant, one-sided Lip- 

schitz constant and Differential Mean Value theorem (DMV) ap- 

proach are given in [41–43] , respectively. Design of FO UIO for Lip- 

schitz class of nonlinear FO system is discussed in [44] . In this 

work, using Lyapunov direct method, LMI condition for the exis- 

tence of observer for 0 < α < 1 is given. However, the proposed ap- 

proach has the limitation that the complete stability region, which 

is non-convex for the considered range of order α, is not exploited 

and the approach as such can not be extended for order in range 

1 ≤α < 2. These issues are addressed in present work by the use of 

DMV theorem. Using DMV theorem, error dynamics with nonlin- 

ear terms is converted to LPV dynamics and then LMI conditions, 

which exploit the complete stability region, are used to derive the 

proposed results. Moreover DMV based approach [43] is reported 

to be less conservative in comparison to Lipschitz based approach 

which is widely adopted in literature. 

In present work, full order and reduced order FO UIO is pro- 

posed for the FO nonlinear systems driven by some unknown in- 

put. To account for the effect of nonlinearity, generally, Lipschitz 

condition is used to make the control design procedure tractable. 

However, in present work, nonlinear part in the error dynamics 

is expressed in appropriate equivalent form using DMV Theorem. 

It leads the error dynamics to evolve as LPV system. Stability of 

the error dynamics is then analyzed using convexity principles and 

corresponding LMI conditions are derived. Existence of the solu- 

tion of LMI conditions guarantees the convergence of the error dy- 

namics or in turn convergence of the observer states to the sys- 

tem states. Solution of the LMI gives the observer design matrices. 

The derived results are validated through extensive simulations by 

considering FO chaotic Chen and L ̈u systems which belong to the 

proposed class of nonlinear systems. 

The paper is organized as follows: Preliminary results on sta- 

bility of FO LTI systems are given in Section 2 . Problem formula- 

tion for full order observer design for the proposed class of non- 

linear FO systems is given in Section 3 . In Section 4 , main results 

of full order FO observer design are presented. LMI conditions for 

the existence of observer for both the ranges of order of the sys- 

tem i.e. 0 < α < 1 and 1 < α < 2 along with methodology to decou- 

ple the error dynamics from unknown input are derived in this 

section. Section 5 shows the simulation results to justify the pro- 

posed claim. Design of reduced order FO UIO with results of sim- 

ulation is presented in Section 6 to Section 9 . Finally conclusion of 

the work is drawn in Section 10 . 

Notations used. b n ( j) is a canonical basis vector of n dimensional 

space i.e. b n ( j) ∈ R 

n with all entries 0 except 1 at j th position. Co 

means convex hull, D 

α is the fractional derivative operator of order 

α. 

2. Preliminary results on stability of FO LTI systems 

Here, some basic definitions related to FO systems are given. 

Fractional order derivative is a generalization of integer order 

derivative. Fractional derivative is usually defined in following 

three ways [23] . 

The first is Riemann–Liouville derivative: 

a D 

α
t f (t) = 

1 

�(n − α) 

d n 

dt n 

∫ t 

a 

f ( τ ) 

( t − τ ) α−n +1 
dτ (1) 

n − 1 < α < n 

The second way is the Caputo derivative: 

a D 

α
t f (t) = 

1 

�(n − α) 

∫ t 

a 

d n f ( τ ) 

dt n 

( t − τ ) α−n +1 
dτ (2) 

n − 1 < α < n 

where n ∈ N and α ∈ R 

+ and Gamma function �( · ) is defined as 

�(τ ) = 

∫ ∞ 

0 

e −t t τ−1 dt 

Caputo definition has the advantage of defining initial conditions 

for fractional order differential equations in the same way as for 

integer order differential equations. 

Third way is the Grunwald–Letnikov (GL) definition: 

a D 

α
t f ( t ) = lim 

h → 0 
h 

−α

[ t−a 
h ] ∑ 

j=0 

( −1 ) 
j 

(
α

j 

)
f ( t − jh ) (3) 

where [ · ] means integer part. 

In present work, Caputo definition is used for analysis of pro- 

posed class of systems. D 

α is used to denote Caputo derivative of 

order α. Numerical approximation of the fractional derivative at in- 

stant kh is given as 

( k −L m /h ) D 

α
k f (t) � h 

−α
N(t) ∑ 

j=0 

(−1) j 
(

α
j 

)
f (k − j) (4) 

where N(t) = min (k, L m 

/h ) , L m 

is the memory length, h is the time 

step of the calculation and ( −1 ) j 
(

α
j 

)
= C α

j ( j = 0 , 1 , . . . ) are bino- 

mial coefficients which are calculated iteratively as 

C α0 = 1 

C αj = 

(
1 − 1 + α

j 

)
C αj−1 (5) 

If the FO LTI systems use commensurate order hypothesis i.e. if 

all the fractional orders in system are multiples of the same order 

then the following state space form is admissible 

0 D 

α
t x (t) = A x (t) + B u (t) 

y (t) = C x (t) (6) 
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