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a b s t r a c t 

This research work contributes to the formation of spatial patterns in fractional-order reaction-diffusion 

systems. The classical second-order partial derivatives in such systems are replaced with the Riemann–

Liouville fractional derivative of order α ∈ (1, 2]. We equally propose a novel numerical scheme for the ap- 

proximation in space, and the resulting system of equations is advance in time with the improved fourth- 

order exponential time differencing method. Mathematical analysis of general two-component integer 

and non-integer order derivatives are provided. To guarantee the correct choice of the parameters in the 

main dynamics, we carry-out their linear stability analysis. Theorems regarding the local-stability and the 

conditions for a Hopf-bifurcation to occur are also provided. The proposed numerical method is applied 

to solve two non-integer-order models, namely the biological (predator-prey) and chemical (activator- 

inhibitor) systems. We observed some amazing patterns that are completely missing in the classical case 

at different values of fractional power α in high dimensions that evolve in fractional reaction-diffusion 

equations. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Dynamical systems with integer and non-integer order deriva- 

tives are often known as the classical and fractional differential 

equations, respectively. The study of both cases have received a lot 

of attention over the years and across many disciplines in areas 

of applied sciences and engineering [1,5,8,9,19,20,21] . More impor- 

tantly, they are mostly applied in the modelling of real-life dynam- 

ical systems, such as the pattern formation process, chaotic and 

spatiotemporal phenomena, quasi-chaotic dynamical systems, the 

dynamics of porous media or complex material, and random walks 

with memory. 

Over the years, most of the patterns obtained has been exam- 

ined for the class of integer-order reaction-diffusion systems in one 

and high dimensions. In the present work, we aim to extend this 

study by considering the pattern formation results of fractional- 

in-space reaction-diffusion systems, in a number of cases, for two 

different reaction kinetics, one in biology and the other with ap- 

plications in physics and chemistry. We chose these dynamics to 

be able to draw a reasonable comparison between the integer and 

E-mail addresses: mkowolax@yahoo.com , kmowolabi@futa.edu.ng 

non-integer order systems, yet spatial patterns arising from both 

often appear similar [15,17] . 

Now, we first introduce the general two-component reaction- 

diffusion system, written in the form 

u t = d 1 �
2 u (x, t) + f 1 (u, v ) , 

v t = d 2 �
2 v (x, t) + f 2 (u, v ) , 

} 

(1.1) 

where u, v are vectors representing the species concentration or 

densities at time t and position x in the presence of diffusions 

d 1 > 0, d 2 > 0. The nonlinear functions describing the reaction ki- 

netics are given by f 1 and f 2 . System (1.1) can be solved us- 

ing any of the boundary conditions namely; Neumann (zero-flux), 

Dirichlet, periodic or Robin type on bounded domain �⊂ R 

n . The 

chemical species concentrations are specified at t = 0 , ∀ x ∈ �. The 

choice of zero-flux boundary condition in this paper is to ensure 

the dynamic system is self-contained with zero population flux 

across the boundary. 

A diffusion-driven instability which is commonly known as the 

Turing instability occurs when a homogeneous equilibrium state 

solution of system (1.1) is linearly stable to some perturbations 

in the absence of the diffusion terms ( d 1 , d 2 ) but linearly un- 

stable in the presence of diffusion to small spatial perturbations. 
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A spatially-uniform steady state of the system (1.1) is the state 

(u ∗, v ∗) : f 1 (u ∗, v ∗) = f 2 (u ∗, v ∗) = 0 in such a way that u = u ∗, v = 

v ∗ satisfies the boundary conditions. Turing demonstrated that un- 

der a particular condition on the parameter values, an equilibrium 

point could be linearly stable if the diffusion is absent but unstable 

if otherwise. 

For instance, using a zero-flux boundary condition on a rectan- 

gular domain, for diffusion-driven instability to occur, the condi- 

tions 

∂ f 1 
∂u 

+ 

∂ f 2 
∂v < 0 , 

∂ f 1 
∂u 

∂ f 2 
∂v − ∂ f 1 

∂v + 

∂ f 2 
∂u 

> 0 , d 1 
∂ f 2 
∂v + d 2 

∂ f 1 
∂u 

> 0 , 

d 1 
∂ f 2 
∂v + d 2 

∂ f 1 
∂u 

> 2 

√ 

d 1 d 2 
(

∂ f 1 
∂u 

∂ f 2 
∂v − ∂ f 1 

∂v + 

∂ f 2 
∂u 

)
⎫ ⎪ ⎬ 

⎪ ⎭ 

(1.2) 

must be satisfied. Further analysis of two-component system can 

be found in [7,10,12–14,18] . 

Following the description for the integer-order system above, 

we now consider the general noninteger-order reaction-diffusion 

model, as a special case of (1.1) given in the form 

u t = �αu (x, t) + ℘f 1 (u, v ) , 

v t = d�αv (x, t) + ℘f 2 (u, v ) , 

} 

(1.3) 

where ℘ denotes the relative strength of the local reaction ki- 

netics, 1 < α ≤ 2 is the fractional order of the species u ( x, t ), 

v ( x, t ) densities. Other parameters remain as earlier defined. 

The solution of the above system can be sought, subject to 

any boundary conditions. For instance in one component, for 

an infinite model, x ∈ (−∞ , ∞ ) , here R is a subset of (−∞ , ∞ ) . 

For the case x ∈ [0 , L ] , 
∂u i 
∂x 

(0 , t) = 

∂u i 
∂x 

(L, t) = 0 , i = 1 , 2 , . . . , n, no- 

flux or Neumann boundary condition for a finite system, and 

x ∈ [0 , L ] , u (0 , t) = u (L, t) = u a , i = 1 , 2 , . . . , n is referred to as the 

Dirichlet boundary condition. Finally for a fixed system, where 

u i ( t , x ) ∈ R 

n , { i : R 

n → R and d is the diffusion tensor, and �α = (
∂ α

∂x α
, ∂ α

∂y α
, ∂ α

∂z α

)T 

, is the Riemann–Louiville fractional gradient in 

high dimensions, for 

∂ α

∂x α
u (x, y, z) = 

1 

�(1 − α) 

∂ 

∂x 

∫ x 

0 

u (ξ , y, z) 

(x − ξ ) α
dξ , 

with 

∂ α

∂y α
and 

∂ α

∂z α
having the same expressions. Also, as reported 

in [18] we have 

�αu (x, t ) = 

∂ α

∂t α
∇ 

2 u (x, t ) = L 

−1 

{
∂ α−1 

∂t α−1 
∇ 

2 u (x, t) | t=0 

}
with similar expression for v , is the generalization of the diffu- 

sion operator from standard to fractional. When solving the system 

with the Laplace transform, the term L 

−1 

{
∂ α−1 

∂t α−1 
∇ 

2 u (x, t) | t=0 

}
actually preludes the introduction of nonphysical terms. Proceed- 

ing just as in the classical case, perturbation about point ( u ∗, v ∗) 

leads to linearized system of equations 

∂�u (x,t) 
∂t 

= �αu (x, t) + ℘(a 11 �u + a 12 �v ) , 

∂�v (x,t) 
∂t 

= D �αv (x, t) + ℘(a 21 �v + a 22 �u ) , 

⎫ ⎬ 

⎭ 

(1.4) 

By adopting the techniques of spatial Fourier and temporal 

Laplace transforms, we get 

ζ�u (ω, ζ ) − � ˜ u (ω, t = 0) = ℘ [ a 11 �u (ω, ζ ) + a 12 �v (ω, ζ ) ] 

−ζ αω 

2 �u (ω, ζ ) , 

ζ�v (ω, ζ ) − �v (ω, t = 0) = ℘ [ a 21 �u (ω, ζ ) + a 22 �u (ω, ζ ) ] 

−ζ αω 

2 �v (ω, ζ ) , 

which decouples into 

�u (ω,ζ) = 

(ζ + ζ αDω 

2 −℘a 22 ) �u (ω, t = 0) + ℘a 12 �v (ω, t = 0) 

(ζ + ζ αω 

2 −℘a 11 )(ζ + ζ αDω 

2 −℘a 22 ) −℘ 2 a 12 a 21 

, 

�v (ω, ζ ) = 

(ζ + ζ αω 

2 −℘a 11 ) �v (ω, t = 0) + ℘ 21 �u (ω, t = 0) 

(ζ + ζ αω 

2 −℘a 11 )(ζ + ζ αDω 

2 −℘a 22 ) −℘ 2 a 12 a 21 

. 

Thus, the Turing condition for non-integer order reaction-diffusion 

system is obtained by finding the inverse of the Laplace trans- 

forms. 

The aim of this paper is in folds, and is broken into sections. 

We introduce two important dynamics in Section 2 and present 

their linear stability results. Condition for the emergence of Turing 

instability is also provided. Numerical method for time and space 

discretization is formulated in Section 3 . Numerical experiment at 

different instances of fractional order is reported in Section 4 , and 

finally conclude the paper with the last section. 

2. The dynamical systems and their stability analysis 

In this section, we study the local (asymptotic) stability of the 

nontrivial states, existence of Hopf-bifurcation at the neighbour- 

hood of the steady state, and examine the condition for the Turing 

instability to arise. Two examples that are still current interests are 

considered 

2.1. Biological (prey-predator) system 

We consider the diffusive Holling–Tanner integer and non- 

integer order reaction-diffusion system [14] 

∂u 
∂t 

− d 1 �
αu = f 1 (u, v ) = ru 

κ−u 
κ+ cu 

− μu v 
u + ρv , 

∂v 
∂t 

− d 2 �
αv = f 2 (u, v ) = φv 

(
1 − h v 

u 

)
, 

⎫ ⎬ 

⎭ 

(2.5) 

where u ( x, t ) and v ( x, t ) describe the prey-predator population 

densities at time and position x . The parameters r, μ, κ , ρ , φ
and h are nonnegative constants that denote the respective prey 

intrinsic growth, capturing rate, carrying capacity, half capturing 

saturation constant, intrinsic growth rate of the predator, rate of 

conversion of prey to predator population. The replacement of 

mass in the density at κ is given by the ration r / c, d 1 and d 2 
are the diffusion coefficients of u and v , respectively. The term 

�α = ( ∂ α/∂ x α + ∂ α/∂ y α) , is the fractional Laplacian operator in 

two dimensions. It should be noted that we recover the classical 

operator when α = 2 . 

Analysis of system (2.5) is done subject to the initial conditions 

of the form 

u (x, y, 0) > 0 v (x, y, 0) > 0 , (x, y ) ∈ �, 

and the zero-flux boundary conditions 

∂u 

∂� 

= 

∂v 
∂� 

= 0 , (x, y ) ∈ ∂�, t > 0 

where � ⊂ R 

α, 1 < α ≤ 2 is assumed to be bounded with bound- 

ary ∂�, ϖ denotes the outward normal vector on ∂�. Next, we 

verify the stability of non-diffusive form of system (2.5) . That is, 

u t = ru 

κ − u 

κ + cu 

− μu v 
u + ρv 

, v t = φv 
(

1 − h v 
u 

)
. (2.6) 

It is not difficult to see that (2.6) has a trivial state at point E 0 = 

(κ, 0) . Algebraic findings reveals that if μ < r(ρ + h ) , above model 

has a nontrivial state E ∗ = (u ∗, v ∗) , where u ∗ = 

κ(ρr + hr −μ) 
ρr+ cμ+ hr 

, v ∗ = 

1 
h 

u ∗. 
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