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a b s t r a c t 

This paper deals with a finite time robust synchronization problem of a class of uncertain fractional 

chaotic/hyper-chaotic systems with a novel fractional sliding mode control technique. Firstly, a fractional 

order sliding surface is proposed to mimic the behavior of master chaotic system. Then, a fractional order 

sliding mode control (FOSMC) methodology is derived analytically for convergence of all the synchroniz- 

ing errors to zero in finite time. Finally, the derived control strategy is augmented with an auxiliary 

control based on uncertainty and disturbance estimator (UDE) for ensuring the robustness of the closed 

loop system dynamics in the presence of system uncertainties. Further, the uncertainties with unknown 

bounds are tackled for depicting the practical scenario and these results are also applicable to the N- 

dimensional uncertain chaotic as well as hyper-chaotic systems. Moreover, Mittag-Leffler and fractional 

order Lyapunov results are utilized to prove the stability and finite time convergence. Also, the proposed 

method delivers chatter-free control signal which is a major issue in sliding mode. MATLAB simulations 

are carried out to verify the efficacy and robustness of the derived results by considering two examples 

from literature. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fractional calculus (FC) has grabbed the great attention of re- 

search community worldwide [1–5] . Investigation in FC began with 

a question raised by mathematician L’Hopital from Leibniz about 

fractional differentiation in 1695. Since then, the fractional differ- 

ential equations have been employed in modeling several real time 

systems [6–18] such as electrical circuits [6] , viscoelastic beam 

[9] , diffusion equation model [10] , non-holonomic systems [11,12] , 

chaotic systems [13–18] etc. Chaotic (with single positive Lyapunov 

exponent) or Hyper-chaotic systems (having two positive Lyapunov 

exponents) are special class of non-linear dynamical system that 

exhibit high sensitivity to parametric and initial condition varia- 

tions [14] . Many ordinary chaotic systems have been redesigned as 

fractional order (FO) systems such as FO-Lorenz [15] , FO-Chen [16] , 

FO-Rossler [17] , FO-Lu [18] etc. which can be termed as chaotic or 

hyper-chaotic systems. 

The concept of chaotic synchronization was first explored from 

1990 ′ s paper [19] by Pecora and Carroll. It is basically a master- 
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slave chaotic configuration in which slave chaotic system is made 

to follow the master chaotic system dynamics. Wide variety of 

applications of chaos synchronization are found in secure com- 

munication [20] , image processing [21] etc. Moreover, in recent 

years, the synchronization problem of fractional order chaotic sys- 

tems has attracted the research fraternity. Various control tech- 

niques such as projective synchronization [22] , adaptive control 

[23–26] , passive control [27] , active control [28] , fuzzy based 

control [29] , sliding mode control [30] , feedback control [31] , 

backstepping [33,34] etc. have been integrated with the chaotic dy- 

namics to address their issues of synchronization as well as chaos 

suppression. 

However, few shortcomings have been reported in previ- 

ous investigations. The control techniques devised in [22,23,26–

28,31,32,35,38,39] have not taken the system uncertainties into 

account. In [25,29,30,34,36,37,47] , the system uncertainty with 

known bounds is reflected in one of the chaotic states and a sin- 

gle input control is created only for that particular system state. 

While this paper reduces such a design conservatism by consid- 

ering unknown bounded complex uncertainties in every chaotic 

state. Furthermore, in most of the above works, the stability 

of the fractional order systems is ensured through conventional 

Lyapunov method, whereas, in this paper, the asymptotic stabil- 

ity has been proved through Mittag-Leffler and fractional order 
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Lyapunov method [40–42] which renders more realistic approach. 

Moreover, the methods in most of the aforementioned papers, 

demonstrate that the convergence of the desired dynamics is guar- 

anteed in infinite time. But, the results presented in this paper 

show the finite time convergence even in the presence of distur- 

bances. The adaptive control approaches mentioned in the above 

studies can efficiently handle the parametric uncertainties, but 

combined numerical errors, sensor noise or unstructured uncer- 

tainties may drive system towards instability. 

Among these control methods, the sliding mode control (SMC) 

is known for the best non-linear control technique for ensuring the 

robustness against system uncertainties [43] . But, the deficiency 

of this powerful method is chattering (high frequency oscillations) 

generated due to finite switching frequency operation or discon- 

tinuous action. Approximation functions such as tanh(.) or sat(.) 

reduces chattering as well as robustness properties. Therefore, to 

overcome this limitation, our proposed controller has introduced 

uncertainty and disturbance attenuator (UDE), developed by the 

authors in [44] . It has been applied to SMC in [45] for integer 

order linear time invariant systems (LTI). Since, the fractional or- 

der controllers provide better performances and robustness prop- 

erties than their integer counterparts [47,48] . Thus, in this paper, 

the fractional order SMC is designed with a novel sliding surface. 

To the best of authors’ knowledge, the proposed controller has yet 

not been developed in literature for such a class of system. 

Inspired by the above description, this paper explores a new 

solution to synchronization problem of a class of uncertain frac- 

tional chaotic systems in master-slave configuration with a novel 

fractional sliding mode control technique. Firstly, a new fractional 

order sliding surface is proposed to mimic the behavior of mas- 

ter chaotic system. Then, fractional sliding mode methodology is 

derived for convergence of synchronizing error to zero in finite 

time. Finally, the formulated control strategy is augmented with 

the auxiliary control based on uncertainty and disturbance estima- 

tor (UDE) for ensuring the robustness of the closed loop system 

dynamics in the presence of system uncertainties. The uncertain- 

ties are introduced to the slave chaotic system and their bounds 

need not to be known in advance unlike prior works. These analyt- 

ical results are applicable to the N-dimensional uncertain chaotic 

and hyper-chaotic systems. Moreover, the Mittag-Leffler and frac- 

tional order Lyapunov results are utilized to guarantee the stability 

and finite time convergence of closed loop dynamics. Also, the pro- 

posed method delivers chatter-free control signal, which is a major 

issue in sliding mode. MATLAB simulations are carried out to illus- 

trate the efficacy and robustness of the developed scheme by con- 

sidering two examples. First example is robust synchronization of 

two identical two-dimensional FO-Duffing Holmes chaotic systems 

inspite of the uncertainties and noise. Second example is synchro- 

nizing control of two different three-dimensional hyper-chaotic 

FO-Lu system and FO-Chen system with uncertainties. 

The paper is arranged as follows: Section 2 describes the fun- 

damentals of fractional calculus and stability concepts of fractional 

order control systems. Section 3 deals with the structure of frac- 

tional chaotic systems and its control problem. The proposed frac- 

tional order sliding mode controller for synchronization purpose is 

devised in Section 4 . Section 5 provides the MATLAB simulation 

work with two examples. Eventually, the conclusion is drawn in 

Section 6 . 

2. Fractional calculus preliminaries 

Fractional order calculus (FOC) is a generalized mathematical 

notion of integer-order calculus (IOC). Few main results relevant 

to FOC are described in the following sections: 

2.1. Fractional derivatives and integrals 

To deal with fractional order (FO) chaotic systems, we need to 

solve complex fractional differential equations (FDE). According to 

literature survey, there are three universally used definitions of FO 

differ-integrals: Grunwald-Letnikov, Caputo and Riemann-Liouville. 

Elementary integro-derivative operator b D 

γ
t is represented by: 

b D 

γ
t = 

{ 

∫ t 
b (dτ ) 

−γ γ < 0 

1 γ = 0 

d γ

d t γ
γ > 0 

(1) 

where γ is a real order and ( b, t ) are lower and upper limits of 

integro-differential operation, respectively. The fundamental defi- 

nitions are expressed as [1–3] : 

1. Gruwald-Letnikov (GL) Definition: 

GL 
0 D 

γ
t = lim 

h → 0 

1 

h 

γ

∞ ∑ 

i =0 

(−1) 
i 

[
γ
i 

]
f (t − ih ) (2) 

2. Riemann-Liouville (RL) Definition: 

RL 
0 D 

γ f (t) = 

1 

�(m − γ ) 

d m 

d t m 

∫ t 

0 

f (τ ) 

(t − τ ) 
γ −m +1 

, 

�(m ) = (m − 1)! , t > 0 , m ∈ Z, m − 1 ≤ γ < m (3) 

where �( •) denotes Euler’s gamma function defined by: �(p) = ∫ ∞ 

0 t p−1 e −t dt 

3. Caputo(C) Definition: 

C 
0 D 

γ f (t) = 

1 

�(m − γ ) 

∫ t 

0 

f m ( τ ) 

( t − τ ) 
γ −m +1 

dτ , m − 1 ≤ γ < m 

(4) 

where m is a first integer, larger than γ . Note that the Grunwald- 

Letnikov and Riemann-Liouville derivatives are equivalent if f ( t ) is 

a smooth function. 

Further, the physical significance of fractional calculus is ex- 

plained in [4] with interpretation of time and shadows on two 

planes. Various properties of fractional calculus are well presented 

in [5] . Lemma and some properties related to Riemann-Liouville 

(RL) derivative and Caputo (C) derivative are given as: 

Lemma 1. The following inequality holds for an integrable func- 

tion f ( t ), if there exists atleast one t ′ ∈ (0, t ) such that f ( t ′ ) � = 0 then 

there is a constant M > 0 such that 

D 

−γ | f ( t ) | ≥ M (5) 

Property 1. For RL-Derivative, we have: 

RL 
t0 D 

−γ
t 

(
RL 
t0 D 

α
t f (t) 

)
= 

RL 
t0 D 

α−γ
t f (t) 

−
m ∑ 

i =1 

RL 
t0 D 

α−i 
t f (t) 

∣∣
t = t 0 

(t − t0) 
γ −i 

�(1 + γ − i ) 
, 

m − 1 ≤ γ < m (6) 

Property 2. For RL and C-Derivative, we have the following equal- 

ity: 

RL,C 
to D 

γ
t 

(
RL,C 
to D 

−β
t f (t) 

)
= 

RL,C 
to D 

γ −β
t f (t) , γ ≥ β ≥ 0 (7) 

2.2. Stability analysis of fractional order non-linear systems 

With the advent of fractional calculus, the stability analysis 

of non-integer non-linear systems has received a great attention 
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