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a b s t r a c t 

The paper devotes to the synthesis of synchronizability and mode-locking of two scaled quadratic maps 

via symmetric direct-coupling. Present research shows that, similar to diffusive-coupling, the direct- 

coupling also admits all synchronized motions. Nevertheless, the synchronized motions are degenerated 

to the controlled dynamics instead of the pseudo-orbits of the local map. In consideration of chaos syn- 

chronization, nonlinear perturbations on the synchronized subspace are employed to perform the syn- 

chronization stability analysis. The synchronizability is also surveyed from a different perspective through 

investigating the synchronization of the coupled chaotic map in the presence of small parameter mis- 

match. The emergence of mode-locking phenomena in two-dimensional parameter space is secondary 

but proclaims the existence of incomplete synchronization. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Synchronization between interacted chaotic systems has been 

a subject of great interest up to now. The preliminary definition 

of chaos synchronization is referred to as an adjusting process 

wherein the augmented system composed of two or more coupled 

chaotic systems evolves, and finally achieves an agreement of tra- 

jectories or locking of phases. The physical mechanisms of differ- 

ent coupling configurations have been well-understood from their 

theoretical studies and practical applications [1] . There are sev- 

eral types of interaction patterns which incorporate the uncoupled 

chaotic systems as an ensemble [2] . The interaction terms usu- 

ally take the form of being proportional to differences of the state 

variables or their derivatives linearly or nonlinearly. A variety of 

thresholds associated with the control schemes play a crucial role 

in synchronizing the unrelated behavior of the augmented system 

[3] . The synchronized states of the augmented system share the 

property of asymptotic stability either locally or globally [4] . The 

chaos synchronization is characterized by the positive tangent Lya- 

punov exponents coupled with the negative transverse Lyapunov 

exponents, when complete synchronization is achieved [5] . 

From the last century to today, a large number of papers 

have had an in-depth insight into the synchronization of identi- 
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cal chaotic maps, especially one-dimensional chaotic maps, via dif- 

fusive couplings. In comparison with the uncoupled chaotic maps, 

such a map ensemble becomes more complex and can produce un- 

precedented behavior due to the dimension augment, such as on- 

off intermittency [6,7] , spatio-temporal chaos [8] , various regular 

spatial modes [9] , riddled basins [3,7] . Much effort has been put 

into the study of the period-doubling (Abbr. PD ) bifurcation sce- 

narios, as well as the quasi-periodic behavior with mode-locking, 

before stepping into the aperiodic motion [10,11] . In this case, the 

stability conditions for the synchronized dynamics can be derived 

from the pseudo-orbits of the local map, especially the critical val- 

ues in regard to the uniform station and the symmetry break- 

ing/recovering [2,10] . It means that once the synchronized state has 

been reached, the effect of a small perturbation that destroys syn- 

chronization is rapidly damped, and synchronization will be recov- 

ered again. 

An alternative pattern of interaction is direct coupling. The dif- 

ference between direct coupling and diffusive coupling is that the 

direct coupling term is independent of the present state of the re- 

ceiving oscillator [1] . This is very important in considering the os- 

cillation death phenomenon and its applications in unidirectional 

synchronization of chaotic electronic circuits [1,10] . What is impor- 

tant is the dynamical behavior of directly coupled oscillators that 

may differ substantially from that of diffusively coupled ones. Dur- 

ing the last few years, significant progress has been made in the 

study of the properties and the applications of interacted oscilla- 

tors and map networks via direct coupling [12–18] . 
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The main objective of this paper is to perform the synchroniza- 

tion stability analysis of an ensemble map consisting of two scaled 

quadratic maps via symmetrical direct-coupling. The differences 

between diffusive coupling and direct coupling in chaotic maps are 

demonstrated by illustrating the unique features of the later. What 

is more important is that, in the direct-coupling maps, the syn- 

chronized motions are degenerated to the controlled dynamics in- 

stead of the pseudo-orbits of the local map. Despite all the fun- 

damental difference, both coupling patterns share most common- 

alities. The most obvious one is that the direct-coupling also ad- 

mits all synchronized motions, besides asynchronization. Further- 

more, such a symmetric configuration leads to the symmetric fixed 

points, which may bring out in-phase and out-of-phase orbits that 

destine to undergo different bifurcation scenarios. One of which 

are interested is the generic way of the birth of Neimark-Sacker 

(Abbr. NS ) bifurcation from the out-of-phase orbits. Mode-locking 

on the two-dimensional parameter space is secondary but demon- 

strates the implicit asymmetry properties behind the symmetric 

configuration. It is an indication of the existence of incomplete 

synchronization. 

This paper is organized as follows: In Section 2 , we introduce 

the model of direct-coupling maps of interest and figure out what 

happens on the synchronized manifold before probing into the way 

on achieving synchronization. The first part of Section 3 focuses on 

the synchronization stability of the direct-coupling maps in virtue 

of nonlinear perturbations. Basins of the synchronized and the 

non-synchronized attractors are presented to show the complex- 

ity of the synchronization in the densely chaotic regime. The sec- 

ond part investigates the synchronizability of the direct-coupling 

maps in the presence of small parameter mismatch. The accep- 

tance region of the small symmetry-breaking bifurcation parameter 

are deduced from the estimations on the boundaries of the orbits. 

Section 4 devotes to the implicit asynchronization and demon- 

strates the phenomenon of mode-locking arising in the direct- 

coupling maps in spite of symmetry configurations. Finally, the re- 

sults are summarized in the conclusions. 

2. System descriptions 

2.1. The scaled quadratic map 

The two-dimensional map of interest is consisting of two scaled 

quadratic maps via symmetric direct-coupling, 

T (x, y ) : 

{
x n +1 = g(x n ) + εy n 
y n +1 = g(y n ) + εx n 

(1) 

where, g(z) = b f a (z) , and f a (z) = 1 − az 2 . In the coupled map (1) , 

ε is the coupling strength, b the scale factor, a the bifurcation pa- 

rameter of the quadratic map f a ( z ). This system has an intrinsic 

symmetry S : ( x, y ) → ( y, x ) such that S (2) is the identity, which acts 

in the full phase space R 

2 . 

In the absence of the coupling strength, i.e. ε = 0 , the factor 

b is undoubtedly scaling the dynamics of the quadratic map f a ( z ). 

Without considering the extreme case b = 0 , the orbits of g ( z ) are 

uniformly bounded in [ −b, b] if b > 0 or [ b, −b] if b < 0. The bifurca- 

tion values of f a ( z ) are denoted by a ∗. All the bifurcation points of 

g ( z ) are shifted from a ∗ to a ∗
b 2 

. For example, the saddle-node (Abbr. 

SN ) bifurcation for g ( z ), where two fixed points are created but 

their stability are opposite, occurs at − 1 
4 b 2 

, which is not equal to 

a ∗ = − 1 
4 unless b = ±1 . The boundary crisis (Abbr. BC ) curve, be- 

yond which the dynamics approaches to infinity ultimately, is de- 

scribed by ab 2 = 2 [19,20] . 

Fig. 1. Four representative BC curves on the ε − b plane: �1 : a = 

1 
4 
, �2 : a = 

9 
16 

, 

�3 : a = 

9 
4 
, �2 : a = 2 ; and several primary bifurcation curves listed in Table 1 by 

specifying a = 2 . 

Table 1 

The elliptic equations for several primary PD curves, SN curves and 

BC curve of map T 1 , a > 0. 

Type Label k Elliptic equation 

Fold SN 1 0 4 ab 2 + (ε − 1) 2 = 0 

Flip PD 1 2 4 ab 2 + (ε − 1) 2 = 4 

Flip PD 2 
√ 

6 4 ab 2 + (ε − 1) 2 = 6 

Flip PD 4 

√ 

6 + 

√ 
2+ 

√ 
2 

165 

3 
4 ab 2 + (ε − 1) 2 = 6 + 

√ 
2+ 

√ 
2 

165 

3 

Fold SN 2 
√ 

8 4 ab 2 + (ε − 1) 2 = 8 

BC � 3 4 ab 2 + (ε − 1) 2 = 9 

2.2. Dynamics on the synchronized subspace 

Given the symmetry S , there is a subspace of initial condi- 

tions fixed by the symmetry. A synchronized subspace consisting 

of points ( x, x ) with x ∈ R is invariant such that the orbits start- 

ing from any points in this subspace will remain there for all time 

unless there are imperfections in the symmetry configurations. 

Clearly the diagonal line x = y is that invariant manifold for com- 

plete synchronization, either chaotic orbits or periodic orbits due 

to the symmetry S . Different from the diffusive-coupling, the dy- 

namics of this case is governed by the following one-dimensional 

controlled map 

T 1 : z n +1 = b f a (z n ) + εz n . (2) 

By specifying a > 0, the orbits of T 1 are bounded in [
− 2 b 

ε + 2 

, 
4 ab 2 + ε 2 

4 ab 

]
, if b > 0 , or 

[
4 ab 2 + ε 2 

4 ab 
, − 2 b 

ε + 2 

]
, if b < 0 . 

On the parameter plane ε − b, all the BC curves, through vary- 

ing the bifurcation parameter a , are fully determined by the elliptic 

equations in the same form, 

4 ab 2 + (ε − 1) 2 = 9 . (3) 

Besides the center (ε, b) = (1 , 0) , the vertexes on the major 

axis of all the BC curves are identical. However, the focal points of 

BC curves with different a are diverse from each other, such that 

the co-vertexes on the minor axis are all different. Fig. 1 displays 

four representative BC curves by specifying a ≥ 1 
4 . Therefore the 

major axis of the elliptic equations is b = 0 and the minor axis is 
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