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a b s t r a c t 

We introduce a general class of stochastic processes driven by a multifractional Brownian motion (mBm) 

and study the estimation problems of their pointwise Hölder exponents (PHE) based on a new local- 

ized generalized quadratic variation approach (LGQV). By comparing our suggested approach with the 

other two existing benchmark estimation approaches (classic GQV approach and oscillation approach) 

through a simulation study, we show that our estimator has better performance in the case where the 

observed process is some unknown bivariate function of time and mBm. Such multifractional processes, 

whose PHEs are time-varying, can be used to model stock prices under various market conditions, that 

are both time-dependent and region-dependent. As an application to finance, an empirical study on mod- 

eling cross-listed stocks provides new evidence that the equity path’s roughness varies via time and so 

does the corresponding stock price informativeness properties from global stock markets. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Being a natural extension of Brownian motion (Bm) and frac- 

tional Brownian motion (fBm, see [1] ), multifractional Brownian 

motion (mBm) has nowadays been successfully applied to many 

fields such as finance, network traffic, biology, geology and sig- 

nal processing, etc. Unlike Bm and fBm, mBm is a continuous-time 

Gaussian process whose increment processes are generally not sta- 

tionary. However, the feature that multifractional process allows its 

local Hölder regularity to change via time makes the process flex- 

ible enough to model a much larger class of empirical data than 

the fBm does. 

In the literature, there exist several slightly different ways 

to define an mBm (see e.g., [2–5] ). In this paper we define an 

mBm { X ( t )} t ∈ [0, 1] through the so-called harmonizable representa- 

tion (see [2,4] ): for the time index t ∈ [0, 1], 

X (t) = 

∫ 
R 

e itξ − 1 

| ξ | H(t)+1 / 2 
d ̃

 W (ξ ) , (1.1) 

where: 

– H is called the pointwise Hölder exponent (PHE) of { X ( t )} t ∈ [0, 1] . 

Recall that, for a continuous nowhere differentiable process 
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{ Y ( t )} t , its local Hölder regularity can be measured by the PHE. 

The PHE ρY is a stochastic process defined by: for each t 0 , 

ρY (t 0 ) = sup 

{ 

α ∈ [0 , 1] : lim sup 

ε→ 0 

| Y (t 0 + ε) − Y (t 0 ) | 
| ε| α = 0 

} 

. 

For the mBm { X ( t )} t , it is shown by the zero-one law (see e.g., 

[4] ) that its PHE H is almost surely deterministic. 

– The complex-valued stochastic measure d ̃

 W is defined by the 

Fourier transform of the real-valued Brownian measure d W . 

More precisely, for all f belonging to the class of squared in- 

tegrable functions over R (i.e., f ∈ L 2 (R ) ), we have ∫ 
R ̂

 f (t) d ̃

 W (t) = 

∫ 
R 

f (t) d W (t) , 

where ̂ f denotes the Fourier transform of f : 

̂ f (ξ ) = 

∫ 
R 

e −iξ t f (t ) d t , for all ξ ∈ R . 

Multifractional processes, in particular mBm, come into vogue 

recently and are widely applied to financial modeling under em- 

pirical market conditions. For example, the last systemic financial 

crisis dated from 2007 to 2009 has strongly questioned the well- 

posedness of the classic dichotomy between efficient and ineffi- 

cient markets. It is believed that the real financial markets are a 

complex system such that Bm and fBm are too reductive to ex- 

plain it [6] . Unlike fBm, mBm is flexible enough to overcome this 
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inconvenience, mainly because its PHE can vary via time. Through 

an empirical study by Bianchi and Pianese [6] , it is shown that the 

real-world stock prices can be modeled based on an mBm. Later, 

by estimating the PHE of the stock price dynamics, Bianchi et al. 

[7] find that the PHE fluctuates around 1/2 (the sole value con- 

sistent with the absence of arbitrage), with significant deviations. 

In 2012, Bertrand et al. [8] introduce sparse modeling for mBm 

and apply it to NASDAQ time series. Recently, Bianchi and Frezza 

[9] have suggested a new way to quantify how far from efficiency 

a market is at any fixed time t . Their dynamical approach, based 

on estimation of the time-varying PHE of the log-variations of the 

3 stock indexes - Dow Jones Industrial Average (DJIA), the Dax 

(GDAXI) and the Nikkei 225 (N225), allows to detect the periods 

in which the market itself is efficient, once a confidence interval is 

fixed. Note that it is more difficult to estimate the mBm’s PHE than 

the fBm’s, due to the non-stationarity of the mBm’s increment pro- 

cesses. This problem becomes even more challenging when model- 

ing an individual stock price (e.g., stock price of a particular entity) 

in lieu of averaged equity indexes, because the former one is not 

necessarily non-arbitrage and its corresponding PHE may be time- 

dependent and may take arbitrary values between 0 and 1. So far, 

there is not yet a satisfying model fitting the individual stock price 

process using multifractional processes. In this paper we aim to 

provide suitable models to describe these individual stock prices. 

Our main contribution consists of the following. 

1. We introduce a general class of multifractional processes, that 

can be used to describe the behavior of individual stock re- 

turns on equity markets. The proposed model is based on the 

assumption that the stock return is some unknown function of 

both time t and an mBm at that time t (see Section 2 ). 

2. Under the above assumption, we develop a new efficient ap- 

proach to estimate the above model’s PHE. The estimators from 

our approach are shown to be consistent (see Section 3 ). 

3. In Section 5 , through a simulation study, we compare the per- 

formances of three estimation approaches (our new localized 

generalized quadratic variation approach (LGQV), the classic 

GQV approach and the oscillation method) on various functions 

�. 

4. In the empirical study ( Section 6 ), We apply the general multi- 

fractional process to model the individual stocks and use LGQV 

approach to estimate cross-listed stocks’ PHEs. Then we deter- 

mine the market factors that drive the individual stock returns’ 

PHEs. The estimators of the PHEs reveal that the PHEs of indi- 

vidual stock prices are time-varying under various market con- 

ditions and their behaviors vary via different market regions. 

This interesting result enables us to examine the main individ- 

ual stock’s PHE drivers. 

Note that the Matlab codes used in Sections 5 and 6 are pro- 

vided. We conclude the paper in Section 7 and provide proof of 

the main result in Sections 8 . The supplementary graphs, tables 

and other detailed technical proofs are given in Appendix A . 

2. A general class of multifractional processes 

Before introducing the general multifractional model that we 

are interested in, we briefly review the estimation of the multi- 

fractional process’ PHE. 

In the multifractional process modeling problem, there is an 

obstacle: the PHE is basically not straightforwardly observed. The 

issue of estimating the PHE effectively arises. There are so far a 

number of estimation strategies existing in the literature. We refer 

to [10–15] and the references therein. 

Coeurjolly [10,11] estimates the PHE of an mBm, starting from 

an observed discrete sample path of that mBm, using the LGQV 

approach (see also [16] ). Bertrand et al. [12] study the same esti- 

mation problem as in [10,11] , using the nonparametric estimation 

approach - increment ratio (IR) statistic method. This IR estimator 

has been later improved by Bardet and Surgailis [13] to the so- 

called pseudo-increment ratio approach, and it is applied to esti- 

mate the PHE of a more general multifractional Gaussian process 

(whose increments are asymptotically a multiple of an fBm) than 

mBm. There exist other approaches to estimate the PHE of fBm, 

that can be possibly extended to estimate the PHE of mBm. For 

example, in chaos theory and time series analysis, the statistical 

self-affinity is another measurement of the process path roughness. 

Since this exponent is tightly related to the PHE of self-similar pro- 

cesses (e.g., fBm), the detrended fluctuation analysis (DFA) meth- 

ods developed by Peng et al. [17,18] can be used to estimate the 

PHE of fBm. The time-varying PHE of mBm can be then approx- 

imated by applying the DFA piecewisely over time. However, the 

statistical self-affinity is not equivalent to the PHE of a process, 

because it does not share all the properties of the Hausdorff di- 

mension [17,18] , while the Hausdorff dimension is equivalent to the 

PHE when the corresponding process is self-similar. In other litera- 

ture, it has been shown that the wavelet-based method is actually 

more accurate than the DFA on estimation of the PHE. Muzy et al. 

[19] have obtained representations of turbulence data and Brow- 

nian signals via wavelet decompositions. Bardet et al. [20] have 

applied the wavelet coefficient methods to estimate the PHE of 

long-memory processes (e.g., fBm with its PHE being greater than 

1/2), where some rate of convergence of the estimators are de- 

rived. Wendt et al. [21] have developed the wavelet leader based 

multifractal analysis for estimating 2D functions (images). Inspired 

by the above works, Jin et al. [14] have provided a wavelet-based 

estimator of the time-varying PHE of a class of multifractional pro- 

cesses with a fine convergence rate, when the observations are the 

wavelet coefficients of some unknown function of a multiple of 

mBm, i.e., the observed process is of the form �( θ ( t ) X ( t )), with �

and θ being unknown C 2 -functions. In both [13,14] , estimators of 

PHE with fine convergence rates are constructed and strategies for 

selecting input parameters are discussed. 

Note that in our paper we also consider a model more gen- 

eral than the one in [14] , in that it allows � to be a function 

of both t and x , i.e., we assume the observed signal is some un- 

known function of time t and mBm X : �( t, X ( t )). We apply the 

LGQV-based approach to estimate the PHE of �( t, X ( t )), when one 

of its discrete paths is observed. Similar to Jin et al. [14] , an estima- 

tor with fine convergence rate is constructed and appropriate pa- 

rameter selection is discussed. In [15,22] the oscillation estimation 

method, which could be applied to estimate the PHE of all pro- 

cesses with continuous paths, is discussed. The main advantages 

of our approaches are: (1) The model is simple and general enough 

for finance application. (2) Compared to the oscillation estimation 

method, the LGQV method has higher accuracy and it allows us to 

select the input parameter from a large range of values. We will 

provide a fine rate of convergence of our LGQV estimator, which 

will further help practitioners to determine the best input parame- 

ter values. (3) One disadvantage of the increment ratio approaches 

is that, it is unable to estimate the PHE over the whole time inter- 

val [0,1]. Fig. 1 is an example showing that, only part of the path of 

{ H ( t )} t ∈ [0, 1] is estimated by the increment ratio method. However, 

the algorithm for LGQV-based approach can estimate H pointwisely 

from t = 0 to t = 1 . Moreover, it can be easily implemented using 

various programming languages such as Matlab, R and Python, etc. 

Throughout this paper we consider the following model: for 

t ∈ [0, 1], 

Z(t) = �(t , X (t )) , (2.1) 

where 
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