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a b s t r a c t 

Non-Fickian or anomalous diffusion had been well documented in material transport through heteroge- 

neous systems at all scales, whose dynamics can be quantified by the time fractional derivative equa- 

tions (fDEs). While analytical or numerical solutions have been developed for the standard time fDE in 

bounded domains, the standard time fDE suffers from the singularity issue due to its power-law function 

kernel. This study aimed at deriving the analytical solutions for the time fDE models with a modified 

kernel in bounded domains. The Mittag-Leffler function was selected as the alternate kernel to improve 

the standard power-law function in defining the time fractional derivative, which was known to be able 

to overcome the singularity issue of the standard fractional derivative. Results showed that the method 

of variable separation can be applied to derive the analytical solution for various time fDEs with ab- 

sorbing and/or reflecting boundary conditions. Finally, numerical examples with detailed comparison for 

fDEs with different kernels showed that the models and solutions obtained by this study can capture 

anomalous diffusion in bounded domains. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fractional calculus, which is a linear integral differential op- 

erator developed by Riemann, Liouville, Caputo, Riesz, and others 

[1,2] , generalizes the integer-order derivative to an arbitrary order 

[3] . Fractional diffusion equations (fDEs) or fractional advection–

diffusion equations (fADEs) built upon fractional calculus can 

characterize anomalous or non-Fickian transport, and various 

methods have been developed to solve the fractional-derivative 

equations analytically or numerically. For example, Wyss [4] solved 

the fDEs in the closed form of Fox functions. Metzler and Klafter 

[5] considered the fDE with absorbing and reflecting boundaries 

using the method of variable separation. Agrawal [6] obtained a 

general solution for a fractional diffusion-wave equation defined 

in a bounded domain in space using the finite sine transform 

technique. Mainardi et al. [7] interpreted the related Green func- 

tion as the fundamental solution for the fDEs, and then revisited 

the Cauchy problem for the time-fractional diffusion equation [8] . 
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The fundamental solutions were solved using the Fourier–Laplace 

transform, which was the function of the Wright-type. Huang and 

Liu [9] derived the solution of the fADE in a half-space. Povstenko 

[10,11] obtained the fundamental solution to the nonhomogeneous 

space–time-fractional telegraph equation and the generalized 

Cattaneo-type telegraph equations with Caputo time fractional 

derivatives, respectively. Povstenko [12] presented the solutions to 

the time fractional diffusion-wave equations in bounded domains. 

Various numerical solutions have also been developed for the fDE 

and fADE with the absorbing or reflecting boundary [13–17] . Most 

of the solutions mentioned above have been successfully applied 

to a variety of real-world problems [18–23] . 

From the point of view of mathematics, the reason that the 

fDE or fADE can characterize anomalous transport is related to 

the power-law function used as the kernel of the fractional oper- 

ator. This definition, however, leads to the well-known singularity 

problem of the fractional-derivative models, challenging their nu- 

merical solution and real-world applications. New definition of the 

kernel was therefore developed recently. For example, Caputo and 

Fabrizio [24] applied a non-singular exponential function kernel 

to replace the singular power-law function kernel. Further stud- 

ies of this relatively new derivative were reviewed in literature 

[25–27] , and the numerical solution was given in [28] . Sun et al. 
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[29] developed a stretched exponential kernel, and then presented 

the numerical solution for the corresponding relaxation models. 

Atangana and Baleanu [30] proposed another non-singular kernel 

function of fractional calculus, using the Mittag-Leffler (M-L) func- 

tion as the kernel. Atangana and Koca [31] and Baleanu and Fer- 

nandez [32] revisited the definition and investigated properties of 

the resultant fractional derivative, including the analytical solution 

for the related ordinary partial-differential equation. Tateishi et al. 

[33] solved the Cauchy problem in an infinite domain, and com- 

pared the solution for the fDEs with the power-law, exponential, 

and M-L function kernels. Yang et al. [37] proposed a new frac- 

tional diffusion equation with the extended Mittag-Leffler function 

kernel. These studies motivated us to select the promising M-L 

function as the kernel for the fDE and fADE models, and then de- 

rive the analytical solutions which are not available yet. 

This work first revisits the M-L function kernel derivatives 

and reviews their properties in Section 2 . In Section 3 , the an- 

alytical solutions are derived for the fDEs and fADEs defined 

in a bounded domain (i.e., with the absorbing and/or reflecting 

boundary conditions). In Section 4 , examples are used to explore 

characteristics of the density profiles with different fractional 

orders in the fractional-derivative model. We also compare the 

solution, especially the mean square displacement, of the im- 

proved fractional-derivative model with the standard model with a 

power-law function kernel. Analytical solutions for the fractional- 

derivative models with different kernels are then distinguished in 

Section 5 . Conclusions are finally drawn in Section 6 . 

2. Mittag-Leffler (M-L) function 

The one- and two-parameter Mittag-Leffler functions can be 

written as ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

E α( −t α) = 

∞ ∑ 

k =0 

( −t ) 
αk 

�( αk + 1 ) 
, 

E α,β ( −t α) = 

∞ ∑ 

k =0 

( −t ) 
αk 

�( αk + β) 
, 

(1) 

respectively. Some important properties of (1) which are needed 

in deriving the analytical solution of the time fDE in the follow- 

ing, including the M-L function of x , λt α , and the Laplace transform 

of t β−1 E α,β ( −λt α) , are shown below (for detailed derivations, see 

[34] ): ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

E 1 ( x ) = e x , 

C 
0 D 

α
t E α( λt α) = λE α( λt α) , 

L 
[
t β−1 E α,β ( −λt α) 

]
= 

s α−β

s α + λ
, Re ( s ) > | λ| 1 α . 

(2) 

The fractional derivative with the M-L function kernel is defined 

as: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ABC 
a D 

α
t f ( t ) = 

B ( α) 

1 − α

∫ t 

a 

df ( τ ) 

dτ
E α

[
−α

( t − τ ) 
α

1 − α

]
dτ, 

ABR 
a D 

α
t f ( t ) = 

B ( α) 

1 − α

d 

dt 

∫ t 

a 

f ( τ ) E α

[
−α

( t − τ ) 
α

1 − α

]
dτ, 

(3) 

where the superscript “ABC” denotes the Atangana and Baleanu 

definition of the Caputo fractional derivative, “ABR” denotes the 

Atangana and Baleanu definition of the Riemann-Liouville frac- 

tional derivative [32] , the index α denotes the order of the time 

fractional derivative, B ( α) is a function used for normalization, and 

E α( · ) denotes the single-parameter M-L function. Here the Caputo 

representation makes a huge advantage since it allows the tradi- 

tional initial condition to be remained in the governing equation 

[2] . For example, applying the Laplace transform on both sides of 

Eq. (3) , we obtain 

L 
[

ABC 
a D 

α
t f (t) 

]
= 

B (α) s α−1 
[
s ̃  f (s ) − f (0) 

]
(1 − α) s α + α

, (4) 

where s is the Laplace transform parameter, ˜ f (s ) is the Laplace 

transform of f ( t ), and f (0) defines the initial distribution of f ( t ). 

Therefore, we may solve anomalous transport described for exam- 

ple by anomalous diffusion equations or telegraph equations in a 

finite space domain. 
We consider the following time-fractional advection-diffusion 

equation in a finite domain: ⎧ ⎨ 

⎩ 

ABC 
0 D 

α
t u ( x, t ) =k 

∂ 2 u ( x, t ) 

∂x 2 
, 0 ≤ x ≤L, t > 0 , 0 < α ≤ 1 , 

ABC 
0 D 

α
t u ( x, t ) = − v 

∂u ( x, t ) 

∂x 
+k 

∂ 2 u ( x, t ) 

∂x 2 
, 0 ≤ x ≤L, t > 0 , 0 < α ≤ 1 , 

(5) 

where the density u ( x, t ) can represent the (normalized) concentra- 

tion of pollutants in surface water or groundwater; the symbol ABC 
0 D 

α
t 

denotes the fractional operator with the M-L function kernel respect- 

ing to t ; and v and k denote the constant drift velocity and the diffu- 

sion coefficient, respectively. Eq. (5) reduces to the classical diffusion 

equation when α = 1 , as expected. 

3. Solutions to the fractional derivative models 

In this section, we solve the time fDE and the time fADE in 

finite domains. Notably, the analytical solution of the fractional- 

derivative model may change with the boundary condition. The 

absorbing boundary and reflecting boundary [5,15,35] have been 

widely used for real-world processes. Therefore, we investigate the 

analytical solution for the fractional-derivative models with these 

two boundary conditions and their combination. 

3.1. The fDE with two reflecting boundaries 

The model with the initial and boundary conditions can be 

written as: ⎧ ⎪ ⎨ 

⎪ ⎩ 

ABC 
0 D 

α
t u ( x, t ) = k 

∂ 2 u ( x, t ) 

∂x 2 
, 0 ≤ x ≤ L, t > 0 , 0 < α ≤ 1 , 

u ( x, 0 ) = φ( x ) , 0 ≤ x ≤ L, 

u x ( 0 , t ) = u x ( L, t ) = 0 , t > 0 , 

(6) 

whose analytical solution can be derived using the method of vari- 

able separation. Assuming u ( x, t ) = X(x ) T (t) , the resulting equa- 

tion 

ABC 
0 D 

α
t T (t) 

kT (t) 
= 

X 

′′ (x ) 

X (x ) 
= −λ (7) 

can be separated into several eigenequations 

ABC 
0 D 

α
t T ( t ) + λkT ( t ) = 0 , 

X 

′′ ( x ) + λX ( x ) = 0 , X 

′ ( 0 ) = X 

′ ( L ) = 0 . (8) 

Given the zero-value Neumann boundary condition defined in 

(6) , the Sturm-Liouville problem has eigenvalues 

λn = 

(
nπ

L 

)2 

, n = 0 , 1 , ... (9) 

and the following eigenfunctions 

X n (x ) = C n cos 
nπx 

L 
, n = 0 , 1 , ... (10) 

where C n denotes an arbitrary constant. Given the eigenvalue λn , 

the corresponding temporal eigenfunctions T ( t ) can be derived us- 

ing the Laplace transform 

ˆ T n (s ) = T n (0) 

B (α) 
B (α) −A n + A n α s α−1 

s α − A n α
B (α) −A n + A n α

, n = 1 , 2 , ..., (11) 
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