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In this paper we obtain different sufficient conditions for a non-autonomous discrete system to be multi- 

sensitivite. We study properties of a multi-sensitive non-autonomous system in detail. It is proved that on 

a compact metric space every finitely generated non-autonomous system which is topologically transitive 

having dense set of periodic points is thickly syndetically sensitive. We introduce and study the notion 

of totally sensitive non-autonomous systems. We also provide counter examples to support our results. 
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1. Introduction 

Dynamical system is a very well developed branch of mathe- 

matics. In its contemporary formulation, the theory grows directly 

from advances in understanding complex and nonlinear systems in 

physics and mathematics. It describes the time dependence of a 

point in a geometric space and has remarkable connections with 

different areas of mathematics such as topology and number the- 

ory. Over the last 40 years with the discovery of chaos lots of re- 

search has been done in autonomous dynamical systems. The first 

paper that described chaos in a mathematically rigorous way is 

that of Li and Yorke [10] . Chaos theory studies the behaviour of 

highly sensitive dynamical systems, therefore sensitive dependence 

on initial conditions is an integral part in the study of non-linear 

science. In 1971, Ruelle introduced the concept of sensitivity for 

autonomous dynamical systems [14] . In 1989, Devaney introduced 

Devaney chaos and emphasized the significance of sensitivity in 

chaos [4] . Later, Li–Yorke sensitivity and n -sensitivity were intro- 

duced [1,22] and each of these described the complexity of dynam- 

ical systems. A small perturbation in the initial setup of a dynam- 

ical system leads to drastically different behaviour, therefore it is 

important to measure how sensitive the system is. On account of 

this, in 2007, Moothathu proposed stronger forms of sensitivity in- 

cluding multi-sensitivity [13] . 
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Most of the investigations in dynamical systems have been 

done when the system is time independent. However, most of the 

natural phenomena involve time varying governing rules. There- 

fore, there is a strong need to study and develop the theory of 

time variant dynamical systems, that is, non-autonomous dynam- 

ical systems, which is more involved than autonomous dynamical 

systems. In such systems the trajectory of a point is given by suc- 

cessive application of different maps. It has numerous applications 

in biology, physics, etc., [3,5,23] . The notion of non-autonomous 

dynamical system was introduced by Kolyada and Snoha [9] , in 

1996. They extended the notion of topological entropy for au- 

tonomous dynamical system to non-autonomous dynamical sys- 

tem and have obtained many interesting results. Chaos and sensi- 

tivity for non-autonomous dynamical systems were introduced by 

Tian and Chen [19] . In 2013, authors have studied distributional 

chaos, sensitivity and other types of chaos in non-autonomous sys- 

tems defined on a compact metric space [20] . In [18] , authors have 

studied Spectral decomposition theorem in equicontinuous nonau- 

tonomous discrete dynamical systems. In [7,12] , authors have stud- 

ied stronger form of sensitivity in non-autonomous dynamical sys- 

tems. Very recently, in 2018, Shao et. al., have studied Li–Yorke and 

distributional chaos for non-autonomous discrete systems [16] . 

In this paper, our main focus is on multi-sensitivity in non- 

autonomous dynamical systems. It is widely studied in au- 

tonomous dynamical systems and recently in 2016, many inter- 

esting results have been studied [8] . In Section 2 , we give the 

preliminaries required for the remaining sections of this paper. 

In Section 3 , we obtain different sufficient conditions for a non- 
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autonomous system to be multi-sensitive. In Section 4 , we give 

equivalent conditions for multi-sensitivity in non-autonomous sys- 

tems. It is proved that multi-sensitive non-autonomous system has 

positive topological sequence entropy. It is shown that if the fam- 

ily f 1, ∞ 

converges uniformly to f on a compact metric space, then 

(X, f 
[ k ] 
1 , ∞ 

) is multi-sensitive whenever ( X , f 1, ∞ 

) is multi-sensitive. 

In Section 5 , we introduce the concept of total sensitivity for 

non-autonomous systems. It is proved that finitely generated non- 

autonomous system which is topologically transitive having dense 

set of periodic points is always thickly syndetically sensitive on a 

compact metric space. On a locally connected metric space equiv- 

alence of sensitivity and total sensitivity is given. We give counter 

examples to support our results. 

2. Preliminaries 

In this section, we give some definitions and results which are 

required for remaining sections of the paper. Throughout the pa- 

per, let N denote the set of natural numbers, Z + denote the set of 

all non-negative integers and Z denote the set of integers. 

We consider the following non-autonomous discrete dynamical 

system: 

x n +1 = f n (x n ) , n ≥ 1 , (1) 

where ( X , d ) is a metric space and f n : X → X is a continuous map, 

for each n ≥ 1. When f n = f, for each n ≥ 1, system (1) becomes an 

autonomous system. Denote f 1 , ∞ 

:= { f n } ∞ 

n =1 , for given positive in- 

tegers i and n , f i n := f n + i −1 ◦ · · · ◦ f n , f 0 n := id and the k th iterate by 

f 
[ k ] 
1 , ∞ 

= { f k 
k (n −1)+1 

} ∞ 

n =1 
, for any k ∈ N . For the system (1) , the orbit of 

any point x ∈ X is the set, { f n 
1 
(x ) : n ∈ Z + } = O f 1 , ∞ 

(x ) . A point p ∈ X 

is called k-periodic for the system ( X , f 1, ∞ 

), if f n + k 
1 

(p) = f n 
1 
(p) , for 

all n ≥ 0. The set of all periodic points of the system ( X , f 1, ∞ 

) is 

denoted by P ( f 1, ∞ 

). Taking f n = f, for all n ≥ 1. If V is a non-empty 

subset of X satisfying f n 
1 
(V ) ⊆ V, for each n ≥ 1, then V is called an 

invariant set of the system ( X , f 1, ∞ 

). If V is a non-empty, closed 

and invariant subset of X , and no proper subset of V is non-empty, 

closed and invariant, then V is said to be a minimal subset of ( X , 

f 1, ∞ 

). A point x 0 ∈ X is said to be almost periodic point or minimal 

point if its closure orbit is a minimal subset of ( X , f 1, ∞ 

). Equiva- 

lently for any ε > 0, the set { n ∈ N : d( f n 
1 
(x 0 ) , x 0 ) < ε} has bounded 

gaps. Clearly, every periodic point is almost periodic. Let ( Y , g 1, ∞ 

) 

be another non-autonomous system, then if π : X → Y is continuous 

onto which intertwines the actions, then we say that ( Y , g 1, ∞ 

) is 

a factor of the system ( X , f 1, ∞ 

) and ( X , f 1, ∞ 

) is an extension of ( Y , 

g 1, ∞ 

). Let B ( x , ε) denote the open ball of radius ε > 0 and center x . 

Definition 2.1 [19] . We say ( X , f 1, ∞ 

) topologically transitive , if for 

each pair of non-empty open subsets U , V of X , there exists n ∈ N 

such that f n 
1 
(U) ∩ V 
 = ∅ . For any two non-empty open subsets U 

and V of X denote, N f 1 , ∞ 

(U, V ) = { n ∈ N : f n 
1 
(U) ∩ V 
 = ∅} . Therefore, 

the system ( X , f 1, ∞ 

) is transitive if for any pair of non-empty open 

subsets U , V of X , N f 1 , ∞ 

(U, V ) 
 = ∅ . 

Definition 2.2. A non-autonomous system ( X , f 1, ∞ 

) is weakly 

mixing if for any two pairs of non-empty open subsets U 1 , U 2 ; V 1 , 

V 2 in X , there exists a positive integer k , such that f k 
1 
(U i ) ∩ V i 
 = ∅ , 

for each i ∈ {1, 2}. 

Definition 2.3. A non-autonomous dynamical system ( X , f 1, ∞ 

) is 

said to be weakly mixing of order m ( m ≥ 2), if for any non-empty 

open subsets U 1 , U 2 , . . . , U m 

, V 1 , V 2 , . . . , V m 

there is n ∈ N , such 

that f n 
1 
(U i ) ∩ V i 
 = ∅ , for each 1 ≤ i ≤ m . 

A non-autonomous system ( X , f 1, ∞ 

) is said to be non-trivial 

weakly mixing, if there exist two non-empty open disjoint sub- 

sets of X and the system is weakly mixing. A family f 1, ∞ 

is said to 

be commutative if each of its member commutes with every other 

member of the family. In [17] , Sharma and Raghav proved that if 

the family f 1, ∞ 

is commutative, then both the Definitions (2.2) and 

(2.3) are equivalent. 

Theorem 2.1 [17] . If f 1, ∞ 

is a commutative family, then f 1, ∞ 

× f 1, ∞ 

is topologically transitive if and only if f 1 , ∞ 

× f 1 , ∞ 

× · · · × f 1 , ∞ ︸ ︷︷ ︸ 
n −times 

is 

topologically transitive, for each n ∈ N . 

Definition 2.4 [19] . The system ( X , f 1, ∞ 

) is said to exhibit sensi- 

tive dependence on initial conditions if there exists δ > 0 such that, 

for every x ∈ X and any neighborhood U of x , there exist y ∈ U 

and n ∈ N with d( f n 
1 
(x ) , f n 

1 
(y )) > δ; δ > 0 is called a constant of 

sensitivity. We shall denote N f 1 , ∞ 

(U, δ) = { n ∈ N : there exist x, y ∈ 

U such that d( f n 
1 
(x ) , f n 

1 
(y )) > δ} , for any arbitrary open subset U 

of X . 

Definition 2.5. A non-autonomous system ( X , f 1, ∞ 

) is said to be 

chaotic in the sense of Devaney on X if 

1. It is topologically transitive on X ; 

2. P ( f 1, ∞ 

) is dense in X ; 

3. It has sensitive dependence on initial conditions on X . 

Definition 2.6 [7] . A non-autonomous system ( X , f 1, ∞ 

) is cofinitely 

sensitive if there exists δ > 0 such that for any open subset U of X , 

N f 1 , ∞ 

(U, δ) is cofinite, that is, there exists N ∈ N with N f 1 , ∞ 

(U, δ) ⊇
[ N, ∞ ) ∩ N . 

Definition 2.7 [21] . A non-autonomous system ( X , f 1, ∞ 

) is multi- 

sensitive , if there exists δ > 0 such that for any m ∈ N and any non- 

empty open subsets V 1 , V 2 ,..., V m 

of X , 
⋂ m 

i =1 N f 1 , ∞ 

(V i , δ) 
 = ∅ , where 

δ > 0 is constant of sensitivity. 

Definition 2.8. A set F ⊆ N is called syndetic if there exists a pos- 

itive integer a such that { i, i + 1 , . . . , i + a } ∩ F 
 = ∅ , for each i ∈ N . 

A non-autonomous system ( X , f 1, ∞ 

) is syndetically sensitive if there 

exists δ > 0 such that for any open subset U of X , N f 1 , ∞ 

(U, δ) is 

syndetic. 

Definition 2.9. A thick set is a set of integers that contains arbitrar- 

ily long runs of positive integers, that is, given a thick set T , for ev- 

ery p ∈ N , there is some n ∈ N such that { n, n + 1 , n + 2 , . . . , n + p} 
⊆ T . A non-autonomous system ( X , f 1, ∞ 

) is thickly sensitive , if there 

exists δ > 0 such that for any open subset U of X , N f 1 , ∞ 

(U, δ) is 

thick. 

Definition 2.10. A set F ⊆ N is thickly syndetic , if { n ∈ N : n + j ∈ 

F , for 0 ≤ j ≤ k } is syndetic, for each k ∈ N . A non-autonomous 

system ( X , f 1, ∞ 

) is thickly syndetically sensitive , if there exists δ > 0 

such that for any open subset U of X , we have N f 1 , ∞ 

(U, δ) is thickly 

syndetic. 

Definition 2.11. Let S ⊆ N and | S | denote the cardinality of S . Then 

d (S) = lim sup 

n →∞ 

1 

n 

| S ∩ { 0 , 1 , 2 , . . . , n − 1 }| 

d (S) = lim inf 
n →∞ 

1 

n 

| S ∩ { 0 , 1 , 2 , . . . , n − 1 }| 
are called the upper density and the lower density of S , respectively. 

If d (S) = d (S) = d(S) , then d ( S ) is called the density of S . 

Definition 2.12 [7] . A non-autonomous system ( X , f 1, ∞ 

) is said to 

be topologically strongly ergodic on X , if for any two non-empty 

open subsets U and V of X , the upper density of N f 1 , ∞ 

(U, V ) is 

equal to 1. 

Definition 2.13. A non-autonomous system ( X , f 1, ∞ 

) is said to be 

ergodic sensitive , if there exists δ > 0 such that for any open subset 

U of X , N f 1 , ∞ 

(U, δ) has positive upper density. 
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