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a b s t r a c t 

In this paper, we consider the mathematical analysis and numerical simulation of time-fractional multi- 

component systems. Here, the classical time derivatives in such systems are replace with the Atangana–

Baleanu fractional derivative in the sense of Caputo. This derivative is found useful in the sense that it 

combines both the non-local and nonsingular kernels in its formulation. A two-step family of Adams–

Bashforth method is derived for the approximation of the Atangana–Baleanu derivative. Numerical exper- 

iments presented for different instances of α, 0 < α ≤ 1 correspond to our theoretical findings. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nowadays, a new contribution has been made to the applica- 

tion area of fractional calculus where new differential operators 

with non-singular and non-local kernel are applied [2,3] . The new 

kernel introduced applies the so-called generalized Mittag–Leffler 

function as its basis, and the properties of this function make the 

new operators to gain some additional interesting properties that 

are observed in real world scenarios, for example the crossover 

of the mean square displacement and scaling variant. This new 

fractional differential operators have been applied often in vari- 

ous fields of science, engineering and technology since it was sug- 

gested by Atangana and Baleanu in 2016. 

It has been demonstrated that modelling with the Atangana–

Baleanu fractional derivative has random walk for a small time. 

Also, it has been observed that, the Mittag–Leffler function is an 

important and useful filter tool than the power and exponen- 

tial law functions, which makes the Atangana–Baleanu fractional 

E-mail addresses: kmowolabi@futa.edu.ng , owolabikm@ufs.ac.za 

derivative in the sense of Caputo, a powerful mathematical tool to 

model more-complex real world problems [2,4,25] . 

Due to their wider applications, these operators are universally 

known to have given birth to fractional differential equations with 

no artificial singularities as in the case of the Riemann–Liouville 

and Caputo derivatives, due to its non-local nature. We have also 

seen the interest of these operators in the field of numerical anal- 

ysis. Though, to approximate these derivative numerically result 

to various computational issue. Recently, Atangana and Owolabi 

[4] proposed a range of fractional Adams–Bashforth schemes for 

the approximation of the Caputo, Caputo–Fabrizio and Atangana–

Baleanu fractional derivatives. Approximation techniques based on 

Fourier spectral method was suggested in [28] . Many other nu- 

merical techniques that have been used in the past are well high- 

lighted in [21,26,27] and references therein. Thus, to accommodate 

readers interesting in applying these derivative to numerical anal- 

ysis, we present in this paper a viable numerical scheme in con- 

nection with the Atangana–Baleanu fractional differential operator 

in the sense of Caputo when applied to model some real world 

problems arising in biology. 
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In what follows, we briefly highlight the definitions of the Ca- 

puto and modified Riemann–Liouville derivatives, as well as the 

Atangana–Baleanu derivatives with fractional order that is of in- 

terest in this paper. 

Definition 1.1. According to [5,6] , the fractional derivative of a 

continuous and n −time differentiable function is defined by 

C D 

α
t u (t) = 

1 

�(n − α) 

∫ t 

a 

(t − y ) n −α−1 

(
d 

dy 

)n 

u (y ) dy, 

n − 1 < α ≤ n. (1.1) 

Definition 1.2. The modified Riemann–Liouville fractional deriva- 

tive of a function u is defined by 

RL D 

α
t u (t) = 

1 

�(n − α) 

(
d 

dy 

)n ∫ t 

a 

(t − y ) n −α−1 [ u (y ) − u (a )] dy, 

n − 1 < α ≤ n. (1.2) 

Definition 1.3. A non-local and non-singular kernels of the frac- 

tional derivative suggested by Atangana and Baleanu [3] in the 

sense of Caputo is defined as 

ABC D 

α
t [ u (t)] = 

M(α) 

1 − α

∫ t 

0 

u 

′ ( ξ ) E α

[
−α

( t − ξ ) α

1 − α

]
dξ (1.3) 

where M ( α) has the same definitions as in the case of the 

Caputo–Fabrizio fractional derivative [6] , and E α is a one-parameter 

Mittag–Leffler function given as 

u (z) = E α(z) = 

∞ ∑ 

k =0 

z k 

�(αk + 1) 
, α > 0 , α ∈ R , z ∈ C . (1.4) 

It should be noted that there are many other definitions of frac- 

tional derivatives that are not mentioned in the paper. In Section 2 , 

we present the mathematical analysis of the main results based on 

the existence of equilibrium points and the existence of exact so- 

lution for the predator-prey system. A two-step Adams–Bashforth 

scheme is proposed in Section 3 for numerical approximation of 

the Atangana–Baleanu fractional derivative in the sense of Caputo. 

Numerical experiments showing the distributions of the species 

for different instances of fractional power α, with an extension 

to solve a chaotic system is given in Section 4 . We conclude with 

Section 5 . 

2. Mathematical analysis of predator-prey system with local 

derivative 

The dynamical behaviour of predator-prey system consider in 

this paper is given 

dx 1 
dt 

= a 1 x 1 − g 1 x 1 
ην

+ 

g 2 x 2 
(1 − η) ν

− a 1 x 1 
x 1 
ην

− s 1 x 1 x 3 
γ + x 1 

− z 1 M 1 x 1 , 

dx 2 
dt 

= a 2 x 2 + 

g 1 x 1 
ην

− g 2 x 2 
(1 − η) ν

− a 2 x 2 
x 2 

(1 − η) ν
− z 2 M 2 x 2 , 

dx 3 
dt 

= 

s 2 x 1 x 3 
γ + x 1 

− σ x 2 3 − ρx 3 (2.5) 

subject to nonnegative initial population data x 1 (0) ≥ 0, x 2 (0) ≥ 0 

and x 3 (0) ≥ 0 which correspond to respective prey, lower-predator 

and top-predator. We represent the species population densities at 

time t by x 1 , x 2 and x 3 , parameters a 1 , a 2 stand for the intrin- 

sic growth rates of x 1 in compartment 1 and 2, respectively. The 

environmental carrying capacity is represented by ν . The catching 

rate is given by z i , i = 1 , 2 . The prey free zone (that is, area un- 

der protection) is denoted by η. The capturing and conversion rates 

of predators are given by s i , i = 1 , 2 . The death rate and saturation 

constant are denoted by ρ and γ . Finally, M 1 , M 2 denote the joint 

effort of lower- and top-predators to catch prey species in compo- 

nents 1 and 2. 

A number of predator-prey models with various responses 

have been considered with great success [14–18] , it is important 

to mention that the dynamical behaviour of multi-species sys- 

tem cannot be adequately described with the local derivatives, 

as revealed by many research papers, books and monographs [7–

13,19,20,22–24,29,30] . As a result, the classical time derivative in 

system (2.5) is replaced with the fractional derivative in the form 

d αx 1 
dt α

= a 1 x 1 − g 1 x 1 
ην

+ 

g 2 x 2 
(1 − η) ν

− a 1 x 1 
x 1 
ην

− s 1 x 1 x 3 
γ + x 1 

− z 1 M 1 x 1 , 

d αx 2 
dt α

= a 2 x 2 + 

g 1 x 1 
ην

− g 2 x 2 
(1 − η) ν

− a 2 x 2 
x 2 

(1 − η) ν
− z 2 M 2 x 2 , 

d αx 3 
d αt 

= 

s 2 x 1 x 3 
γ + x 1 

− σ x 2 3 − ρx 3 (2.6) 

where d α ·
dt α

can be approximated with any of the Caputo, Caputo–

Fabrizio or the Atangana–Baleanu fractional derivatives of order 

α, 0 < α ≤ 1. The aim of this work is to observe through numerical 

simulation if the model based on the fractional derivative will be 

more descriptive when compared with the one with local deriva- 

tive. 

This paper gives a mathematical basis for computational studies 

of the predator-prey system (2.6) , both from biological and numer- 

ical point of views, we apply the linear stability analysis and dy- 

namical systems theory to obtain conditions on the choice of pa- 

rameters that guarantee biologically meaningful equilibria. 

2.1. Existence of equilibrium points 

To find the equilibrium points of system (2.6) , we first assume 

that the given model is time-independent, such that 

0 = a 1 x 1 − g 1 x 1 
ην

+ 

g 2 x 2 
(1 − η) ν

− a 1 x 1 
x 1 
ην

− s 1 x 1 x 3 
γ + x 1 

− z 1 M 1 x 1 , 

0 = a 2 x 2 + 

g 1 x 1 
ην

− g 2 x 2 
(1 − η) ν

− a 2 x 2 
x 2 

(1 − η) ν
− z 2 M 2 x 2 , 

0 = 

s 2 x 1 x 3 
γ + x 1 

− σ x 2 3 − ρx 3 (2.7) 

We obtain the point S 0 (0, 0, 0) which corresponds to the to- 

tal wash-out of the species. For the second equilibrium point 

S 1 ( ̂  x 1 , 0 , 0) , where ˆ x 1 = ην − ην
a 1 

(
z 1 M 1 + 

g 1 
ην

)
. The condition a 1 −

z 1 M 1 > 

g 1 
ην must be satisfied for ˆ x 1 to be positive. The third point 

S 2 ( ̄x 1 , 0 , ̄x 3 ) indicates the presence of the top predator x 3 , prey x 1 

and absence of lower-predator x 2 , where x̄ 3 = 

(
s 2 ̄x 1 
γ x̄ 1 

− ρ
)

1 /σ . Also 

for x̄ 3 to be positive, we assume that 
s 2 ̄x 1 
γ x̄ 1 

> ρ . From the first equa- 

tion in (2.6) , we let 

H 1 ( ̄x 1 ) 
2 + H 2 ̄x 1 + H 3 = 0 

with H 1 = a 1 > 0 , H 2 = a 1 γ − η
(
a 1 − z 1 M 1 − g 1 

ην

)
and H 3 = (

a 1 − z 1 M 1 − g 1 
ην

)
ηνγ − s 1 ̄x 3 ην . Therefore, η

(
a 1 − z 1 M 1 − g 1 

ην

)
> 

a 1 γ and s 1 ̄x 3 ην > ηνγ
(
a 1 − z 1 M 1 − g 1 

ην

)
for x̄ 1 to be unique and 

positive. 

Lastly, we consider the nontrivial case S 3 (x ∗1 , x 
∗
2 , x 

∗
3 ) , where 

x ∗2 = 

ν(1 − η) 

(a 2 + g 2 ) 

{ 

(a 2 − z 2 M 2 ) + 

g 1 x 
∗
1 

ην

} 

, x ∗3 = 

(
s 2 x 

∗
1 

γ x ∗
1 

− ρ

)
1 /σ. 

For x ∗
2 
, x ∗

3 
to be positive, condition 

s 2 x 
∗
1 

γ x ∗
1 

must hold, and by using 

the first equation in system (2.6) , x ∗
1 

is unique and positive if a 1 = 

ηνG 

γ and x ∗
3 

= 

γG 

s 1 
, where G = a 1 − z 1 M 1 − g 1 

ην − g 2 x 
∗
2 

(1 −ην) 
. The inte- 

rior case is only meaningful in the context of biology to demon- 

strate the coexistence and persistence of the species, hence we 
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