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a b s t r a c t 

In this paper, we numerically study a nonlinear time-fractional reaction-diffusion equation involving the 

Caputo and Atangana–Baleanu fractional derivatives of order α ∈ (0, 1). A novel algorithm known as the 

Laplace Adams–Bashforth method is formulated for the approximation of these derivatives. In the simu- 

lation framework, a tri-tropic food chain system is considered in which the classical time-derivatives are 

replaced with non-integer order derivatives. Mathematical analysis of the main system is examined for 

both stability and Hopf-bifurcations to occur. Numerical simulation results show the existence of chaotic 

behaviours and spatiotemporal oscillations as well as the emergence of some Turing patterns (such as, 

spots and stripes) in two-dimensional space. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nonlinear phenomena arise in a variety of apparently different 

contexts in real-life, for instance in applied biology, physics, engi- 

neering and sciences. Majority of nonlinear problems exist in the 

form of partial differential equations (PDEs). We refer to a popular 

class of PDEs as those that modelled nonlinear reaction–diffusion 

scenarios. Nonlinear diffusion problem is regarded as an important 

class of parabolic equations that is encountered in many physical 

(real-life) situations, such as the dynamics of biological systems, 

image processing, groundwater processes, fractals, computer vision, 

phase transition in electrical–electronic, and mechanical engineer- 

ing [2,3,11–13,31,34–36] . 

Fractional reaction–diffusion systems are often applied to repre- 

sent a lot of applications like the study of chemical reaction, prop- 

agation phenomena, transport system, pattern formation processes, 
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chaos in finance and spatiotemporal distribution of species, among 

many others, see [19–30,32] and references therein [20] . 

The nonlinear time-fractional reaction–diffusion equation con- 

sidered in this work is presented in a general form 

∂ αu (x, t) 

∂t α
= L u (x, t) + N u (x, t) , (1.1) 

where L and N are the respective linear and nonlinear operators 

[5,17,18] . The fractional time derivative of order α is replace with 

either the Caputo or the Atangana–Baleanu fractional derivative of 

noninteger order. Different numerical approaches have been pro- 

posed for the solution of Eq. (1.1) , among which are the homo- 

topy perturbation transform method [7] , Laplace homotopy analy- 

sis method [14] , first integral method [37,38] , and Fourier spectral 

methods [22,32] among many others. 

In what follows, we quick give a tour of some important prop- 

erties of fractional differentiation. The left and right Caputo frac- 

tional derivatives of order α > 0 for a given function f ( t ), t ∈ ( a, b ) 

is respectively defined as 

C D 

α
a,t f (t) = D 

α−n 
a,t 

[
u 

(n ) (t) 
]
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= 

1 

�(n − α) 

∫ t 

a 

(t − ξ ) 
n −α−1 

u 

(n ) (ξ ) dξ , (1.2) 

and 

C D 

α
t,b f (t) = 

(−1) n 

�(n − α) 

∫ b 

t 

(ξ − t) n −α−1 f (n ) (ξ ) dξ , (1.3) 

for n > 0 which holds for n − 1 < α ≤ n . 

The Liouville–Caputo fractional derivative with order α > 0 is 

defined as [27,33] 

C 
0 D 

α
t f (t) = 

1 

�(n − α) 

∫ t 

0 

( t − ξ ) n −α−1 f (n ) ( ξ ) dξ . (1.4) 

The Laplace transform of (1.4) is given as 

L 

{
C 
0 D 

(α) 
t f (t) 

}
= p αF (s ) −

n −1 ∑ 

k =0 

p α−k −1 f (k ) (0) , (1.5) 

where n = [ R (α)] + 1 . 

Let f ∈ H 

1 ( a, b ), a < b , 0 ≤α ≤ 1, the Atangana–Baleanu fractional 

derivative in Caputo sense, or the left Caputo fractional derivative 

with Mittag–Leffler (nonlocal and nonsingular) kernel is defined by 

[1] 

ABC D 

α
a,t f (t) = 

M(α) 

1 − α

∫ t 

a 

E α

[
−α( t − ξ ) α

1 − α

]
f ′ ( ξ ) dξ (1.6) 

where M ( α) is a normalized positive function that satisfies M(0) = 

1 , M(1) = 1 and E α[ ξ ] denotes a one parameter Mittag–Leffler 

function, given in series expansion form 

E α(z) = 

∞ ∑ 

k =0 

z k 

�(αk + 1) 
, α > 0 . (1.7) 

The Laplace transform of (1.6) is defined as [1,8–10,27] 

L 

{
ABC 
a D 

(α) 
t u (t) 

}
(p) = 

M(α) 

1 − α
L 

{∫ t 

a 

u 

′ (ξ ) E α

[
−α

(t − ξ ) α

1 − α

]
dξ

}

= 

M(α) 

1 − α

p αL { u (t) } (p) − s α−1 u (0) 

p α + 

α
1 −α

. (1.8) 

Let f ∈ H 

1 ( a, b ), a < b , 0 < α < 1, the Atangana–Baleanu fractional 

derivative in Riemann–Liouville sense or the left Riemann–Liouville 

derivative with Mittag–Leffler (nonlocal and nonsingular) kernel is 

defined by [1] 

ABR D 

α
a,t f (t) = 

M(α) 

1 − α

d 

dt 

∫ t 

a 

E α

[
−α( t − ξ ) α

1 − α

]
f ( ξ ) dξ . (1.9) 

The aim of this paper is broken down into the following sec- 

tions. Numerical schemes for the approximation of Atangana–

Baleanu fractional derivative in the sense of Caputo is derived 

in Section 2 . The main equation involving a tri-tropic food chain 

model is introduced and analyzed for stability in Section 3 . Nu- 

merical experiment results in one and two dimensions are given in 

Section 4 to depict the behaviour of such dynamical system. Con- 

clusion is finally drawn. 

2. Numerical scheme for fractional-order reaction–diffusion 

equation 

Let us consider the general partial differential equation given in 

(1.1) . By taking the Laplace transform of both sides, we get 

L 

{
∂ αu (x, t) 

∂t α

}
= L { L u (x, t) + N u (x, t) } , (2.10) 

Starting with the Caputo derivative, the above expression trans- 

forms to 

C 
a D 

α
t u (s, t) = G(u, t) , (2.11) 

where u (t) = u (s, t) and G(u, t) = L { L u (x, t) + N u (x, t) } . By follow- 

ing [4,6] , we apply the Caputo fractional integral on both sides of 

(2.11) to get 

u (t) − u (t 0 ) = 

1 

�(α) 

∫ t 

0 

(t − ξ ) α−1 G(u, ξ ) dξ . (2.12) 

With t = t n in (2.12) , we obtain 

u (t n ) = u 0 + 

1 

�(α) 

∫ t n 

0 

(t n − ξ ) α−1 G(u, ξ ) dξ (2.13) 

similarly, when t = t n +1 one obtains 

u (t n +1 ) = u 0 + 

1 

�(α) 

∫ t n +1 

0 

(t n +1 − ξ ) α−1 G(u, ξ ) dξ (2.14) 

On subtraction, we have 

u n +1 − u n = 7 

1 

�(α) 

{∫ t n +1 

0 

(t n +1 − ξ ) α−1 G(u, ξ ) dξ

−
∫ t n 

0 

(t n − ξ ) α−1 G(u, ξ ) dξ

}
. (2.15) 

Bear in mind that 

∫ t n +1 

0 

(t n +1 − ξ ) α−1 G(u, ξ ) dξ = 

n ∑ 

k =0 

∫ t k +1 

t k 

(t k +1 −ξ ) 
α−1 G(u, ξ ) dξ . 

(2.16) 

Next, we apply the Lagrange polynomial to approximate G(u, t) 

as 

P (t)[ ≈ G(u, t)] = 

t − t n −1 

t n − t n −1 

G(u, t n ) + 

t − t n 

t n −1 − t n 
G(u, t n −1 ) 

which in more compact form becomes 

P (t) = 

t − t n −1 

t n − t n −1 

G n + 

t − t n 

t n −1 − t n 
G n −1 

It is allowed to write the first integral in (2.15) as ∫ t n +1 

0 

(t n +1 − ξ ) α−1 G(u, ξ ) dξ

= 

n ∑ 

k =0 

∫ t k +1 

t k 

(t k +1 − t) α−1 
[ 

t − t n −1 

t n − t n −1 

G n + 

t − t n 

t n −1 − t n 
G n −1 

] 
dt 

= 

n ∑ 

k =0 

[
G n 
h̄ 

∫ t n +1 

t k 

(t n +1 − t) α−1 (t − t n −1 ) dt 

−G n −1 

h̄ 

∫ t n +1 

t k 

(t n +1 − t) α−1 (t − t n ) dt 

]
(2.17) 

With substitutions τ = t n +1 − t, t = t n +1 τ and d t = −d τ, we have ∫ t k +1 

t k 

(t n +1 − t) α−1 (t − t n −1 ) dt 

= 

∫ t n +1 −t k +1 

t n +1 −t k 

τα−1 (−τ + t n +1 − t n −1 ) dτ

= 

1 

α + 1 

[
(t n +1 − t k +1 ) 

α+1 − (t n +1 − t k ) 
α+1 

]
−2 h̄ 

α
[ (t n +1 − t k +1 ) 

α − (t n +1 − t k ) 
α] 

(2.18) 

In a similar fashion, we have ∫ t k +1 

t k 

(t n +1 − t) α−1 (t − t n ) dt 

= −
∫ t n +1 −t k +1 

t n +1 −t k 

τα−1 (−τ + t n +1 − t n ) dτ
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