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In this paper, we numerically study a nonlinear time-fractional reaction-diffusion equation involving the
Caputo and Atangana-Baleanu fractional derivatives of order « €(0, 1). A novel algorithm known as the
Laplace Adams-Bashforth method is formulated for the approximation of these derivatives. In the simu-
lation framework, a tri-tropic food chain system is considered in which the classical time-derivatives are
replaced with non-integer order derivatives. Mathematical analysis of the main system is examined for
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behaviours and spatiotemporal oscillations as well as the emergence of some Turing patterns (such as,
spots and stripes) in two-dimensional space.
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1. Introduction

Nonlinear phenomena arise in a variety of apparently different
contexts in real-life, for instance in applied biology, physics, engi-
neering and sciences. Majority of nonlinear problems exist in the
form of partial differential equations (PDEs). We refer to a popular
class of PDEs as those that modelled nonlinear reaction-diffusion
scenarios. Nonlinear diffusion problem is regarded as an important
class of parabolic equations that is encountered in many physical
(real-life) situations, such as the dynamics of biological systems,
image processing, groundwater processes, fractals, computer vision,
phase transition in electrical-electronic, and mechanical engineer-
ing [2,3,11-13,31,34-36].

Fractional reaction-diffusion systems are often applied to repre-
sent a lot of applications like the study of chemical reaction, prop-
agation phenomena, transport system, pattern formation processes,
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chaos in finance and spatiotemporal distribution of species, among
many others, see [19-30,32] and references therein [20].

The nonlinear time-fractional reaction-diffusion equation con-
sidered in this work is presented in a general form

d%u(x,t)

o = Lu(x, t) + Nu(x, t), (1.1)

where L and N are the respective linear and nonlinear operators
[5,17,18]. The fractional time derivative of order « is replace with
either the Caputo or the Atangana-Baleanu fractional derivative of
noninteger order. Different numerical approaches have been pro-
posed for the solution of Eq. (1.1), among which are the homo-
topy perturbation transform method [7], Laplace homotopy analy-
sis method [14], first integral method [37,38], and Fourier spectral
methods [22,32] among many others.

In what follows, we quick give a tour of some important prop-
erties of fractional differentiation. The left and right Caputo frac-
tional derivatives of order « >0 for a given function f(t), te(a, b)
is respectively defined as

Dg f(t) = DI "[u™ (0)]
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for n> 0 which holds forn -1 <« <n.
The Liouville-Caputo fractional derivative with order o >0 is
defined as [27,33]

t
§DEF0) = e [ €= P ©)de, (14

The Laplace transform of (1.4) is given as

n—-1
PUF(s) =y p* 1 f1(0), (1.5)

k=0

2[5 50} -

where n = [R(a)] + 1.

Let feH'(a, b),a<b,0 <« <1, the Atangana-Baleanu fractional
derivative in Caputo sense, or the left Caputo fractional derivative
with Mittag-Leffler (nonlocal and nonsingular) kernel is defined by

1]
g fit) = / Ea[ atoer }ﬁ(&)dé (16)

where M(«) is a normalized positive function that satisfies M(0) =
1,M(1) =1 and E,[£] denotes a one parameter Mittag-Leffler
function, given in series expansion form

k

27, o
= I'(ak+1)

Eq(2) = > 0. (1.7)

The Laplace transform of (1.6) is defined as [1,8-10,27]

(2D )} (p) = ’;”f“;x{ / u/(é)Ea[— S)a} s}
_ M) pr2{u®©}(p) ~s*1u0) o

1-« P+ 1%

Let fe H'(a, b),a<b,0 <« <1, the Atangana-Baleanu fractional
derivative in Riemann-Liouville sense or the left Riemann-Liouville
derivative with Mittag-Leffler (nonlocal and nonsingular) kernel is
defined by [1]

g ity = M) & /E[ a-s é)a}f(é)dé (19)

o dt

The aim of this paper is broken down into the following sec-
tions. Numerical schemes for the approximation of Atangana-
Baleanu fractional derivative in the sense of Caputo is derived
in Section 2. The main equation involving a tri-tropic food chain
model is introduced and analyzed for stability in Section 3. Nu-
merical experiment results in one and two dimensions are given in
Section 4 to depict the behaviour of such dynamical system. Con-
clusion is finally drawn.

2. Numerical scheme for fractional-order reaction-diffusion
equation

Let us consider the general partial differential equation given in
(1.1). By taking the Laplace transform of both sides, we get

L{aau(xt)} = L{Lu(x,t) + Nu(x,t)}, (2.10)

ot

Starting with the Caputo derivative, the above expression trans-
forms to

CDfu(s ) = G(u, t), (211)

where u(t) = u(s, t) and G(u, t) = L{Lu(x, t) + Nu(x, t)}. By follow-
ing [4,6], we apply the Caputo fractional integral on both sides of
(2.11) to get

1 t o
u(t) ~ulto) = gy [ (=)0 £)de (212)
With t =t; in (2.12), we obtain
1 fn o
u(tn) =t + g | =) 0w )as (213)
similarly, when t = ¢, ; one obtains
[11+]
) =0+ gy [ Gt~ )10 6)d (214)
On subtraction, we have
1 tny1 e
Upyr —Up = 7F(O€){/g (tns1 — &) ]g(qu)dS
—fon(tn —-£)*7'G(u, s)ds}, (2.15)

Bear in mind that

[ oo eds = 3 [t 0" o 6)de.
0 k=0 "t

(2.16)

Next, we apply the Lagrange polynomial to approximate G(u,t)
as
—tn 1 t—

PO~ 6.0 = TG tr) +

g(u tn 1)
which in more compact form becomes
thq t—ty
P(t) =
() t_tnlgn+tn—1_tn

It is allowed to write the first integral in (2.15) as

tﬂ+]
/0 (trer — £)7G(u, £)dE

gn—l

Gy

n
- kg /t
n g 298]
= Z |:T‘;] /[ (tn+1 - t)a_] (t - tn—l)dt
k=0 k

gn—l Loy a1
- (tn+1 - t) (t - tn)dt
h ty

With substitutions © = t,,q —t, t = t, 1T and dt = —dt, we have

tk+1 1
f (bper — %1 (£ — ty_p)dt
ty

t—t,_ t—t
(tk+1—t)“”[ g oy Lo gn_l]dt

th — tn—l tho1 — th

(2.17)

th1 —tk+1

=/ TN (=T + tyyq — toq)dT
t

n+1-t

[(tar1 =t )™ = (b1 — )]

T +1
2h
_E[(tnﬂ - tk+1 )a - (tn+l - tk)a]
(2.18)

In a similar fashion, we have

G+
/k (tapr — D) 1(t — t)dt
tk

tney—tk+1
- T (=T by — )T
tn+1—t;
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