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a b s t r a c t 

In this paper, we give analytical solutions of a fractional-time wave equation with memory effect and 

frictional memory kernel of Mittag–Leffler type via the Atangana–Baleanu fractional order derivative. The 

method of separation of variables and the Laplace transform has been used to obtain the exact solu- 

tions for the fractional order wave equations. Additionally, we present analytical solutions considering 

the Caputo–Fabrizio fractional derivative with exponential kernel. We showed that the solutions obtained 

via Caputo–Fabrizio fractional order derivative were a particular case of the solutions obtained with the 

new fractional derivative based in the Mittag–Leffler law. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years there has been a high level of interest in the 

field of fractional differential equations due to their important 

applications in viscoelastic materials, economy, diffusion, electrical 

circuits, biology, chaos theory and engineering [1–19] . In particular, 

the fractional diffusion-wave equation is significant to applications 

of fractional differential equations. In [20,21] , the authors general- 

ized the classical diffusion and wave equations; different physical 

process such that (slow diffusion, classical diffusion, diffusion-wave 

hybrid and the classical wave equation) can be obtained changed 

the fractional order in the range γ ∈ (0; 2]. Chen in [22] analyzed 

and derived the solution of the time-fractional telegraph equation 

with three kinds of nonhomogeneous boundary conditions, using 

the method of separating variables. Momani in [23] suggested an- 

alytic and approximate solutions of the space- and time-fractional 

telegraph differential equations by means of the so called Ado- 

main decomposition method. Huang in [24] derived the analytical 

solution for three basic problems of the so-called time-fractional 

telegraph equations. Tomovski in [25] solved the fractional wave 

equation with frictional memory kernel of Mittag–Leffler type 

via Liouville–Caputo fractional derivative. The method of separa- 

tion of variables and Laplace transform was used to solved the 
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equations. Delic in [26] studied the time fractional wave equation 

with Dirac delta distribution and with homogeneous initial- 

boundary conditions. The rate of convergence in special discrete 

energetic Sobolev norms are obtained. The authors in [27] , pro- 

posed a numerical scheme for solving the time fractional telegraph 

via Liouville–Caputo derivative, a combination of method of line 

and group preserving scheme was proposed to find the approxi- 

mate solutions. The authors in [28] based on the standard Galerkin 

finite element method, a fully discrete finite element scheme was 

presented for solving the variable coefficient fractional diffusion- 

wave equation, the error estimates were established and numerical 

experiments were included to support the theoretical results. In 

[29] , the authors studied the telegrapher’s equation considering 

the topological generalization of the elementary circuit used in 

transmission line modeling in order to include the effects of 

charge accumulation along the line. Capacitive and inductive 

phenomena were assumed to display hereditary effects modeled 

by the use of FC. Tomovski in [30] considered the wave equation 

for a vibrating string in the presence of a fractional friction with 

power-law memory kernel. Exact solutions were obtained in terms 

of the Mittag–Leffler type functions. 

These models have been extended to the scope of fractional 

derivatives using Riemann–Liouville, Riesz and Liouville–Caputo 

derivatives with fractional order [31–36] , these operators are based 

in the power law. Caputo and Fabrizio have suggested an alter- 

native concept of differentiation using the exponential decay as 

kernel instead of the power law [37–41] . Recently, a new concept 

of differentiation was suggested with non-local and non-singular 
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kernel [42] . Many studies have been done around this new 

suggested derivative with great results [43–49] . 

In this paper, we considered the fractional derivatives with 

Mittag–Leffler and exponential kernel in the Liouville–Caputo 

sense to obtain analytical solutions of the fractional wave equation 

with a frictional kernel of Mittag–Leffler type. This frictional mem- 

ory kernel can represent many different forms of friction, which 

can be used depending on the properties of the environment. 

Based on the method of separation of variables and the Laplace 

transform we obtain these novel exact solutions for the fractional 

order wave equations. 

This paper is organized as follows. In Section 2 we recall the 

fractional operator of type Caputo–Fabrizio and Atangana–Baleanu 

in Liouville–Caputo sense. The analytical solutions obtained for the 

fractional wave equations are given in Section 3 . Conclusions are 

given in Section 4 . 

2. Fractional operators 

The Liouville–Caputo fractional order derivative (C) for ( γ > 0) 

is defined as follows [50] 

C 
0 D 

γ
t f (t) = 

1 

�(n − γ ) 

∫ t 

0 

f (n ) ( η) 

( t − η) γ −n +1 
dη, n − 1 < γ < n, (2.1) 

where, f ( n ) is the derivative of integer n th order of f ( t ), 

n = 1 , 2 , . . . , ∈ N. 

The Caputo–Fabrizio fractional order derivative in Liouville–

Caputo sense (CFC) for ( γ > 0) is given by [40] 

CF C 
0 D 

γ
t f (t) = 

M(γ ) 

n − γ

∫ t 

0 

f (n ) ( η)e −
γ

1 −γ (t−η) dη, n − 1 < γ < n, 

(2.2) 

where, M ( γ ) is a constant of normalization that depend of γ , 

which satisfies that, M(0) = M(1) = 1 . 

If, n ≥ 1 and γ ∈ [0, 1] the CF C 
0 

D 

(γ + n ) 
t f (t) of fractional order 

(n + γ ) is defined as 

CF C 
0 D 

γ + n 
t f (t) := 

CF C 
0 D 

(γ ) 
t ( CF C 

0 D 

(n ) 
t f (t)) . (2.3) 

Theorem 2.1. If f is a function sufficiently well behaved, which sup- 

ports (n + 1) derivatives, and γ ∈ (0, 1) we have 

L 

{
CF C 

0 D 

γ + n 
t f (t) 

}
(s ) 

= 

s n +1 L { f (t) } (s ) − s n f (0) − . . . − f (n ) (0) 

s + γ (1 − s ) 
. (2.4) 

Proof. Considering the Eq. (2.3) and the convolution theorem we 

have 

L { CF C 
0 D 

n + γ
t f (t) } (s ) = L 

{
1 

1 − γ

∫ t 

0 

f (n +1) e −
γ

1 −γ (t−η) 

}
(s ) 

= 

1 

1 − γ
L { f (n +1) } (s ) · L 

{ 

e −
γ

1 −γ t 
} 

(s ) 

= 

1 

1 − γ

1 

s + 

γ
1 −γ

(
s n +1 L { f (t) } (s ) 

− s n f (0) − . . . − f (n ) (0) 
)

= 

s n +1 L { f (t) } (s ) − s n f (0) − . . . − f (n ) (0) 

s + γ (1 − s ) 
. 

(2.5) 

This complete the proof. 

�

The fractional integral of type CF is given by [37] 

CF 
0 I 

γ f (t) = ( 1 − γ ) u (t) + γ

∫ t 

0 

u (η) dη. (2.6) 

Theorem 2.2. Let 0 < γ ≤ 1, the following relation is obtained 

CF 
0 I 

γ CF C 
0 D 

γ f (t) = u (t) − u (0) , (2.7) 

where, CF C 
0 

D 

γ f (t) := u (t) . 

Proof. If CF C 
0 

D 

γ f (t) := u (t) , thus 

CF 
0 I 

γ CF C 
0 D 

γ f (t) = 

CF 
0 I 

γ u (t) 

= (1 − γ ) ϕ(t) + γ

∫ t 

0 

ϕ(s ) ds, (2.8) 

where, CF C 
0 

D 

γ u (t) = ϕ(t) , therefore, the Eq. (2.8) it transforms in 

CF 
0 I 

γ CF C 
0 D 

γ f (t) = (1 − γ ) CF C 
0 D 

γ u (t) 

+ 

γ

1 − γ

∫ t 

0 

∫ s 

0 

u 

′ (ξ )e −
γ

1 −γ (s −ξ ) dξds, (2.9) 

considering the change in the order of integration and using the 

Fubini theorem, the above equation becomes 

CF 
0 I γ CF C 

0 D 

γ f (t) 

= (1 − γ ) CF C 
0 D 

γ u (t) + 

γ

1 − γ

∫ t 

0 

u 

′ (ξ )e 
γ

1 −γ ξ
∫ t 

ξ
e −

γ
1 −γ s d sd ξ , 

= (1 − γ ) CF C 
0 D 

γ u (t) + 

γ

1 − γ

∫ t 

0 

u 

′ (ξ )e 
γ

1 −γ ξ

×
[
−1 − γ

γ

(
e −

γ
1 −γ t − e −

γ
1 −γ ξ

)]
dξ , 

= (1 − γ ) CF C 
0 D 

γ u (t) −
∫ t 

0 

u 

′ (ξ )e −
γ

1 −γ (t−ξ ) dξ + 

∫ t 

0 

u 

′ (ξ ) dξ , 

= u (t) − u (0) . 

This complete the proof. �

The Atangana–Baleanu fractional derivative in the Liouville–

Caputo sense (ABC) is defined as follows [42] 

ABC 
0 D 

α
t { f (t) } = 

B (α) 

n − α

∫ t 

0 

d n 

dt n 
f ( θ ) E α

[ 
− α

( t − θ ) α

n − α

] 
dθ, (2.10) 

where, B ( α) is a normalization function, B (0) = B (1) = 1 . 

If, 0 < α ≤ 1, then we define the Laplace transform for the 

Atangana–Baleanu fractional derivative as follows [42] 

L 

[
ABC 
0 D 

α
t f (t) 

]
(s ) = 

(
s αL [ f (t) ] (s ) − s α−1 [ f (0) ] 

s α( 1 − α) + α

)
. (2.11) 

The Mittag–Leffler function of one parameter E γ ( z ) is given by 

[50] 

E γ (z) = 

∞ ∑ 

k =0 

z k 

�(γ k + 1) 
, z ∈ C , � (γ ) > 0 , (2.1) 

where, �( · ) denotes the Gamma function. 

The Mittag–Leffler function of two parameters is defined by the 

following series when the real part of γ is strictly positive [50] 

E γ ,β (z) = 

∞ ∑ 

k =0 

z k 

�(γ k + β) 
, 

z, γ , β ∈ C , � (γ ) > 0 , and � (β) > 0 . (2.2) 

The Srivastava–Tomovski operator is defined in the following 

way [25] (
ε ω;γ ,δ

a + ;α,β
ϕ 

)
(t) = 

∫ t 

a 
( t − η) β−1 E 

γ ,δ
α,β ( ω ( t − η) α) ϕ(η) dη, (2.3) 

if, a = 0 , the Eq. (2.3) is a convolution of functions of the form (
ε ω;γ ,δ

0 ;α,β
ϕ 

)
(t) = 

∫ t 

0 
( t − η) β−1 E 

γ ,δ
α,β ( ω ( t − η) α) ϕ(η) dη, (2.4) 

if, ω = 0 and a = 0 , the Eq. (2.3) coincides with the Riemann–

Liouville fractional integral operator of order β , that is (
ε 0 ;γ ,δ

0 ;α,β
ϕ 

)
(t) = 

RL 
0 I βϕ(t) . (2.5) 
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