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a b s t r a c t 

The intra-specific relation two predators and a prey dependent food chain system is considered in this 

paper. To explore the dynamic richness of such system, we replace the classical time-derivative with ei- 

ther the Caputo or the Atangana–Baleanu fractional derivative operators. Two notable numerical schemes 

for the approximation of such derivatives are formulated. Local and global stability analysis are investi- 

gated to ensure the correct choice of the biologically meaning parameters. The condition for occurrence 

of the Hopf-bifurcation is also observed. We justify the performance of these schemes by reporting their 

absolute error when applied to nonlinear fractional differential equations. In addition, numerical simu- 

lations with different α values and experimented parameter values confirm the analytical results shows 

that modelling with fractional derivative could give rise to a more richer chaotic dynamics. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The study of fractional calculus is not new, it has the same his- 

tory as that of standard calculus in reality. In the last few decades, 

fractional calculus is gaining weight and undergoing a tremendous 

development in modelling and application to real-life cases, see 

[1–3,6,8–10,14,20–29,33–36] , and references therein. 

The nonlocality nature of the fractional derivative makes frac- 

tional problems to be more practical and accurate when compared 

to the classical cases, especially for models which involve mem- 

ory. In recent years, effort s have been made in no small measure 

to formulate new fractional derivative with nonlocal and nonsin- 

gular kernels, See the work of Atangana and Baleanu [1] and that 

of Caputo and Fabrizio [5] for details. 

Fractional calculus as its name reads, refers to fractional differ- 

entiation and integration. Fractional integration is usually refers to 

as the Riemann–Liouville integral, whereas there are various kinds 
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of fractional derivatives, among which are some of the well-known 

definitions that was introduced in [1–3,13,31,32] . 

The left and right Grünwald–Letnikov derivatives with fractional 

order α > 0 of function u ( t ), t ∈ ( a, b ) are respectively defined as 

G L D 

α
a,t u (t) = lim 

h → 0 ,Nh = t−a 
h 

−α
N ∑ 

j=0 

(−1) j 
(

α

j 

)
u (t − jh ) , (1.1) 

and 

G L D 

α
t,b u (t) = lim 

h → 0 ,Nh = b−t 
h 

−α
N ∑ 

j=0 

(−1) j 
(

α

j 

)
u (t + jh ) . (1.2) 

The left and right Riemann–Liouville fractional derivatives of or- 

der α > 0 for a given function u ( t ), t ∈ ( a, b ) are given as 

R L D 

α
a,t u (t) = 

d n 

dt n 

[
D 

α−n 
a,t u (t) 

]
= 

1 

�(n − α) 

d n 

dt n 

∫ t 

a 

(t − τ ) n −α−1 u (τ ) dτ, (1.3) 
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and 

R L D 

α
b,t u (t) = (−1) n 

d n 

dt n 

[
D 

α−n 
t,b 

u (t) 
]

= 

(−1) n 

�(n − α) 

d n 

dt n 

∫ b 

t 

(τ − t) n −α−1 u (τ ) dτ, (1.4) 

where n > 0 is an integer satisfying n − 1 ≤ α < n, and �( ·) denotes 

the Euler’s gamma function. 

The Riesz fractional derivative of order α > 0 of a function u ( t ), 

t ∈ ( a, b ) is defined as 

R Z D 

α
t u (t) = c α

(
R L D 

α
a,t u (t) + 

R L D 

α
t,b u (t) 

)
, (1.5) 

where c α = − 1 
2 cos (απ/ 2) 

, α � = 2 s + 1 , s = 0 , 1 , 2 , · · · . R L D 

α
a,t u (t) and 

R L D 

α
t,b 

u (t) are the left and right Riemann–Liouville derivatives. 

Note that R Z D 

α
t u (t) is ofter expressed as ∂ αu (t) 

∂| t| α , see [18] . 

The left and right Caputo fractional derivatives of order α > 0 

for a given function u ( t ), t ∈ ( a, b ) is respectively defined as 

C D 

α
a,t u (t) = D 

α−n 
a,t 

[
u 

(n ) (t) 
]

= 

1 

�(n − α) 

∫ t 

a 

(t − τ ) n −α−1 u 

(n ) (τ ) dτ, (1.6) 

and 

C D 

α
t,b u (t) = 

(−1) n 

�(n − α) 

∫ b 

t 

(τ − t) n −α−1 u 

(n ) (τ ) dτ, (1.7) 

for n > 0 satisfying n − 1 < α ≤ n . 

The Caputo–Fabrizio fractional derivative of order α > 0 for 

function u ( t ) can be defined as [5] 

CF 
0 D 

α
t y (t) = 

M(α) 

1 − α

∫ t 

0 

y ′ ( τ ) exp 

[ 
− α

1 − α
( t − τ ) 

] 
dτ, (1.8) 

where M ( α) is a normalization function. 

This work examines the major attractive characteristics which 

are the memory and chaos, in numerically simulating the dynam- 

ical systems. It should be mentioned that one of the major dif- 

ferences between the fractional-order and classical-order derivative 

equations is that, non-integer order models have memory; that is, 

the fractional-order system depends on the history of the model. 

Hence, we introduce and utilize the new nonlocal and nonsingular 

kernel version of the fractional derivative operator that was sug- 

gested by Atangana and Baleanu [1] , in the sense of Caputo as 

ABC 
0 D 

α
t [ u (t)] = 

M(α) 

1 − α

∫ t 

0 

u 

′ ( τ ) E α

[
−α

( t − τ ) α

1 − α

]
dτ, (1.9) 

where M ( α) has the same properties as in the case of the Caputo–

Fabrizio fractional derivative. The one-parameter Mittag–Leffler 

function E α( ·) is defined by the series expansion [1,31] 

E α(z) = 

∞ ∑ 

k =0 

z k 

�(αk + 1) 
, α > 0 . (1.10) 

The rest of this paper is structured as follows. Numerical 

approximation schemes based on the fractional forward Euler 

method and the fraction Adams method is formulated in Section 2 . 

In Section 3 , we first introduce the dynamical system and deal 

with the local stability, global stability as well as the bifurcation 

analysis of the system. Numerical experiment for various value of 

α is given in Section 4 , to examine the behaviour of such system 

with fractional derivatives. Conclusion is drawn in the last section. 

2. Numerical methods for fractional differentiation 

In this section, we introduce the numerical methods for the 

general initial-value problem of the form 

D 

α
0 ,t u (t) = g(t, u (t)) , n − 1 < α < n ∈ Z 

+ , 

u 

(s ) (0) = u 

s 
0 , s = 0 , 1 , 2 , · · · , n − 1 . (2.11) 

where D 

α
0 ,t 

u (t) is expressed as the Caputo or Atangana–Baleanu 

fractional derivatives. The following existence and uniqueness re- 

sults for Eqs. (2.11) have been established. 

Theorem 2.1 (Existence result) . Let D := [0 , ω] × [ u 0 
0 

− ε, u 0 
0 

+ ε] 

with some ω > 0 and ε > 0 . Assume that the function g : D → R 

is continuous, we define ω := min { ω, (ε�(α + 1) / ‖ g‖ ∞ 

) 1 /α} . Then, 

there exists a function u : [0 , ω] → R , for the solution of problem 

(2.11) . 

Theorem 2.2 (uniqueness result) . Let D := [0 , ω] × [ u 0 
0 

− ε, u 0 
0 

+ ε] 

with ω > 0 and ε > 0 . Assume f : D → R is bounded on D and satisfy 

a Lipschitz condition w.r.t. the another variable, that is 

| g(t, x ) − g(t, y ) | ≤ M| x − y | (2.12) 

with M > 0 being a constant independent of x, y and t. Then, there 

exists at most a function u : [0 , ω 

∗] → R for the solution of problem 

(2.11) 

Proof. The proofs of Theorems 2.11 and 2.2 using both the Ca- 

puto and the Atangana–Baleanu fractional operators can be found 

in [4,6] �

Given a subinterval [ t k , t k +1 ] , for k = 0 , 1 , 2 , . . . , n − 1 , the func- 

tion g ( t ) is approximated by a constant, that is 

g(t) 
∣∣

[ t k ,t k +1 ] 
≈ ḡ (t) 

∣∣
[ t k ,t k +1 ] 

= g(t k ) (2.13) 

we get 

[
D 

−α
0 ,t g(t) 

]
t= t n = 

1 

�(α) 

n −1 ∑ 

k =0 

∫ t k +1 

t k 

(t n − τ ) α−1 g(τ ) dτ

≈ 1 

�(α) 

n −1 ∑ 

k =0 

∫ t k +1 

t k 

(t n − τ ) α−1 g(t k ) dτ (2.14) 

= 

n −1 ∑ 

k =0 

βn −k −1 g(t k ) , (2.15) 

where 

βk = 


t α

�(α + 1) 
[(k + 1) α − k α] . 

Hence, we obtain the left fractional rectangular scheme 

[
D 

−α
0 ,t g(t) 

]
t= t n ≈

n −1 ∑ 

k =0 

βn −k −1 g(t k ) . (2.16) 

Next, to derive the fractional forward Euler scheme, we approxi- 

mate 
[
D 

−α
0 ,t 

g(t) 
]

at t = t n +1 by using (2.16) to have 

u n +1 = 

m −1 ∑ 

s =0 

t s n +1 

s ! 
u 

(s ) 
0 

+ 
t α
n ∑ 

s =0 

βs,n +1 g(t s , u s ) , (2.17) 

where 

βs,n +1 = 

1 

�(α + 1) 
[ (n − s + 1) α − (n − s ) α] . 

Again, to derive the fractional Adams method, we need to 

briefly discuss about the fractional trapezoidal formula. Consider- 

ing subinterval [ t k , t k +1 ] , we can approximate the function u ( t ) by 

the piecewise polynomial of degree one as 

g(t) 
∣∣

[ t k ,t k +1 ] 
≈ ḡ (t) 

∣∣
[ t k ,t k +1 ] 

= 

t k +1 − t 

t k +1 − t k 
g(t k ) + 

t − t k 
t k +1 − t k 

g(t k +1 ) , 

(2.18) 
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