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A B S T R A C T

In this paper, the motion of two degrees of freedom of a dynamical system consists of a simple pendulum
attached with tuned absorber subject to harmonic excitation is investigated. The governing equations of motion
are obtained using Lagrange’s equations in terms of the generalized coordinates. The multiple scales technique
(MST) is used to gain the solutions of the equations of motion up to the third order of approximation. Two
resonance cases namely; main (primary) external resonance and the internal one have been investigated to
obtain the modulation equations. The amplitude and phase variables are obtained to investigate the possible
steady state solutions and stability conditions. Time histories of the dynamical motions are discussed and pre-
sented graphically at any instant. In addition, resonance curves are graphically presented. The steady state
solutions are obtained and their stabilities are checked.

Introduction

The main aim of the nonlinear dynamics subjects is to deal with the
systems varying with time while dynamics can be used to analyze the
system behavior regardless its degree of complication [1]. The im-
portance of this science is due to its numerous applications in different
fields [2–4].

Many researchers investigated the behavior of vibrating systems e.g.
[5–11]. In [5–7], the authors deal with the stability of a spring pen-
dulum system in which it has a complex behavior under certain re-
sonance conditions. The multiple scales technique (MST) [12] is used to
investigate the approximate solutions of equations of motion (EOM).
They concluded that, the perturbed solutions up to second order ap-
proximation lead to good agreement with the original system than the
first order of approximation. In [8–10], the authors investigated the
previous vibrating system when subjected to either single or multiple
excitation forces. They used (MST) to establish the approximate solu-
tions of EOM up to the third order.

On the other hand, multi degree of freedom (MDOF) systems are
investigated when the pivot point of a damped spring pendulum moves
on a Lissajous curve [13], a circular path [14] and an elliptic path [15].
The authors investigated the resonance cases and stabilized the mod-
ulation equations in framework of MST. The stability of the steady state
solutions are studied using Routh-Hurwitz criterion [16]. In [17], the
authors extended their mentioned works [13,14] when a rigid body

hanged up with a spring in which the other point of the spring is fixed.
The generalization of this work is included in [18] when the attached
point of the spring moves on an elliptic path. The solvability conditions
are obtained after eliminating the observed secular terms in the dif-
ferent approximate solutions. The time histories of the attained solu-
tions are represented graphically to reveal the effect of the different
physical parameters on the motion of the considered system. In [19],
the author investigated the numerical solutions of the EOM of a rigid
body pendulum using fourth-order Runge-Kutta algorithms [20], taking
into consideration the motion of the supported point will be in a hor-
izontal path and depends upon time.

The auto-parametric pendulum models play a good role in damping
the vibrations occurring in building structures when the model is in
resonance or near it. In general, these models consist of primary system
represented by nonlinear oscillator and another secondary one re-
presented by a pendulum [21]. In [22], the nonlinear problem of 2-DOF
auto-parametric damped spherical pendulum is investigated under the
influence of an external excitation at the suspended point. Eisa et al.
[23] studied more complicated model that has 3-DOF of the nonlinear
vibration response of a rolling ship under the action of external and
internal parametric excitation. They classified the emerged resonance
cases and studied the steady state solutions close to these cases. The
dynamic response of an oscillator connected with a pendulum vibration
absorber constituting an autoparametric system is investigated in [24].

In the current study, the motion of autoparametric pendulum
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attached with tuned absorber subjected to harmonic excitation is under
investigation. The pendulum-supported point moves with constant an-
gular velocity in an elliptic path. The simple pendulum and the ab-
sorber are forced to move in a vertical plane. Lagrange’s equations are
used to obtain the EOM that represent two nonlinear second order
differential equations. MST is utilized to establish the approximation
solutions up to the third approximation. The internal and external re-
sonance cases are investigated to obtain the modulation equations. The
steady state solutions are studied, plotted and discussed in view of the
stability conditions. Computer programs are used to represent the ob-
tained solutions graphically in order to describe the manner of the
considered dynamical system under the influence of the applied forces
and the different parameters on the motion of the considered dynamical
model at any time.

The importance of the considered pendulum model is due to its
great applications in different fields like physics and engineering ap-
plications based on vibrating systems such as shipbuilding and ships
motion, structure shaking [2], flow induced vibration [16], rotor dy-
namics, pumps compressors and transportation devices [4]. Moreover,
the pendulum vibration absorbers are widely used for reducing the level
of vibrations of engineering structures (chimneys, television towers,
bridges, tall buildings, antennas), auto-balancing shafts, and so on.

Description of the model

Let us consider the motion of a dynamical model consists of a simple
pendulum of massMwith length ℓ and a nonlinear absorber of a mass m
constraint to move in the longitudinal direction. Supposing that, the
point Q (on the ellipse) corresponds to the point N (on the auxiliary
circle b) and moves in an oval path with constant angular velocity Ω as
shown in (Fig. 1). Let us consider that OY and OX denote to the hor-
izontal and the vertical downward axes respectively with the origin O.
Moreover, let φ denotes the angle enclosed between the vertical and the
line directed to QA and u represents the displacement of the absorber
mass from equilibrium position.

Our aim now is to obtain the equations of motion, therefore the
planar motion is considered, in which after time t one can write the
coordinates of the point Q in the form

= =x a t y b tcos(Ω ), sin(Ω ).Q Q (1)

where a and b are the semi minor and major axes of the elliptic path

respectively.
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= + − +

− + + +

= + + +

+ + + + +

+ − + + +

V k u k u Mg a t φ

mg a t u φ

T M b t φ φ a t φ φ

m b t u φ u φ φ

a t u φ u φ φ

( cos Ω ℓ cos )

[ cos Ω (ℓ ℓ )cos ],

[( Ω cos Ω ℓ ̇ cos ) ( Ω sin Ω ℓ ̇ sin ) ]

([ Ω cos Ω ̇ sin (ℓ ℓ ) ̇ cos ]

[ Ω sin Ω ̇ cos (ℓ ℓ ) ̇ sin ] ),

1
2 1

2 1
4 2

4

0
1
2

2 2

1
2 0

2

0
2 (2)

where k1 and k2 represent linear stiffness of the spring and nonlinear
one, ℓ0 denotes the initial absorber length and the over dots refer to the
derivative with respect to time. Based on the above equations, one
obtains Lagrange’s function = −L T V directly. Therefore, Lagrange’s
equations for the generalized coordinates φ and u take the forms
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Here, C1 denotes the pendulum damping coefficient while C2 ex-
presses the absorber damping coefficient, = ∗F t F t( ) cos(Ω )1 indicates
the acting force in the rotation direction that can be represented as
harmonic function in which ∗F represents the amplitude force of the
system and Ω1 is the forcing frequency. In the framework of obtaining
the desired equations of motion, the following parameters are used
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It is worthwhile to mention that =ω i( ; 1, 2)i represent the natural
frequencies, g is the gradational acceleration and ℓc is the equivalent
length of the pendulum. Making use of (2)–(5), the equations of motion
take the form
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The previous system of Eqs. (6) and (7) consists of two nonlinear
differential equations from second order.

The proposed method

The main target of this section is to utilize the MST to obtain the
approximate solutions of Eqs. (6) and (7) up to the third order of ap-
proximation. Therefore, we express both of φ and u in terms of a small
parameter < ≪ε0 1 as

= =φ t ε εγ t ε u t ε εξ t ε( , ) ( , ), ( , ) ( , ), (8)

According to MST, we can express the asymptotic solutions γ and ξ
as a power series of ε in the formFig. 1. The physical configuration.
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