
Contents lists available at ScienceDirect

Results in Physics

journal homepage: www.elsevier.com/locate/rinp

Relationships among charges, fields, and potential on spherical surfaces
boundary value problems
Ayelet Goldstein⁎, Ofer Eyal
ORT Braude College, P.O.B. 78, Karmiel 21982, Israel

A B S T R A C T

This paper suggests a new point of view for the Poisson equation and its solution for the potential and field on the d dimensional sphere, Sd, on which point charges
are distributed. The available solutions for the potential on multidimensional spheres in the literature are purely mathematical, while the solution suggested here is
motivated by physical intuition and requires minimal background; namely, basic laws of electrostatics and dimensional analysis. In this study, the modified
Coulomb’s law is presented by means of “dimensional reduction” and the use of equivalence between a point charge on Sd and a charged ray in +d 1.

Besides formal detailed solutions and theorems, this paper presents concrete physical examples (unstudied or studied partly), such as distribution of charges/
sources on a two-sphere; Dirichlet problem for currents on a truncated sphere; and fields and potentials created by “infinite” cones. Well-known statements about
special charge distributions in Euclidean space must be reformulated and amended when dealing with the case of charges embedded in a spherical manifold.

Introduction

The fundamental solution for the potential on spheres is related to a
vast variety of physical potential problems, such as creeping flow in
hydrodynamics (Goldstein and Eyal, 2018 [1]), currents (Eyal and Raz,
2016 [2]), electrostatics (Caillol, 2015 [3]), and geophysics (Stuart,
1967 [4]). Multidimensional problems are commonly used in particle
and field theories, cosmological models, and also in field theory to-
gether with general relativity, e.g., the Kaluza-Klein theory. From time
to time physicists build models that are embedded in compact mani-
folds, and the case of Sd embedded in +Rd 1 arises as a natural paradigm.

This paper follows the terminology of electrostatics: sources are
called “charges” and denoted by Q or q, the vector field is regarded as
an electric field and denoted by E , and the potential, , is defined by

=E . However, the relations that we obtain can be translated to
other vector fields, such as electric current density, velocity field, and
heat transfer.

The goal of this paper is to obtain the potential in Sd that is created
by a collection of embedded point charges on the sphere (fundamental
solution). Martinez-Morales, 2005 [5] obtained this potential by using
series of generalized Legendre polynomials. Bogomolov, 1977 [6]
solved the potential function on S2 for a distributed flow affected by
vortices. Cohl, 2011 [7] considered the same problem in Sd by a direct
use of spherical coordinates in solving the Poisson equation locally. On
the other hand, Crowdy, 2003 [8], and Caillol, 2015 [3] solved a
modified version for the defining equation of Green’s function in S2 by
adding a constant (a uniform charge density) to the Dirac delta function

on its right hand side. Our approach for deriving the potential in Sd that
is created by a collection of point charges in it is based on a simple
analog to an equivalent problem in the +d 1 space.

The reduction of the physical problem from +d 1 space to a lower
dimensional manifold can follow from either of these reasons: (1) the
setup is endowed with a symmetry (in our case symmetry under dila-
tation); or(2) the physical setup is constrained (as introduced by
Goldstein and Eyal, 2018 [1] for a liquid in a narrow gap, so that
fluctuations in the velocity field are averaged along the narrow gap
coordinate, providing a two dimensional problem). Eyal and Raz, 2016
[2] presented a solution for the electric current in the particular case of
S2, based on a technique that is conceptually similar to the one pre-
sented in this paper for the general problem in Sd.

Section “Distribution of charges on the manifold S2” deals with a
two-sphere embedded in 3, by means of elementary naive and in-
tuitive methods. Section “Generalization: distribution of charges on the
manifold Sd” generalizes and mathematically formalizes the principles
introduced in Section “Distribution of charges on the manifold S2”.
Section “Closed polarized surface, charged Sd 1 embedded in Sd, and
the average theorem” gives several insights about how geometric
physical laws have to be amended when living in spheres. Section
“Physical examples related to spheres” deals with physical examples,
some of which are new, while some are for the sake of a consistency
check with our results.
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Distribution of charges on the manifold S2

Given a charge distribution anywhere in 3 ( =d 2) enables us to
find the potential everywhere, by Coulomb’s law integral, or mathe-
matically, by convolution of the charge distribution with a Green’s
function in 3 (imposing zero potential at infinity). We take advantage
of this property after showing that there is a simple and intuitive
method that provides an equivalence between point charges on a sphere
S2 and a distribution of charges in 3. For this purpose, we consider a
semi-infinite charged ray in 3, emanating from the origin in the
r -direction (Fig. 2.1(a)), and let this =r R be the direction to a point
charge on a sphere (where the sphere is centered at the same origin).
We show that for an appropriate distribution of charges along the ray
with a sophistication, then the radial field is independent of angles.

Moreover, for oppositely charged rays (Fig. 2.1(b)), we will can
eliminate the radial field at any arbitrary measuring point in 3. Due to
this ability, the contribution of a single point charge in S2 can be the
same as that of a single charged ray in 3. This dimensional reduction,
in which there are no field components that leave the sphere, enables us
to simulate observables on the sphere.

Pictorially, considering a charge as a source of field-lines, every line
emanating from a positive charge has no “infinity” to run to; so, on S2,
the field-line emanating from a positive charge has to enter into a ne-
gative charge, simply because there is no other possibility. This insight
leads to an important requirement about charge distribution: on a
sphere, the net charge must vanish.

The next section includes an example to illustrate this need. It also
presents several results related to the field and potential created by a
collection of rays in 3, as preparation to obtaining them on a sphere.

Some results about charged rays

The reduction of the D3 Euclidean problem into D2 on a sphere can
achieved by the simple observation that the radial component of the
field cancels, as we discuss in the following.

Due to the superposition principle, the electric field created by a
uniformly charged ray with longitudinal density has the form

=E r u r other lengths( ) ( , ), where u is an unknown function. We
now note that the units of the electric potential coincide with those of
the charge density,1 and units of the electric field are those of the
charge density divided by length. Armed with this insight and provided

that the physical problem does not contain any intrinsic length, the field
should be =E h r( )r , where h is some function that does not depend
on the distance to the origin.

Moreover, we now show that the radial component of the field is
independent of angles. Let us consider the uniformly charged-ray de-
picted in Fig. 2.2(a) with a density . If one considers and the arcs (BC
and BC), centered at the origin, shown in Fig. 2.2(b); since the field is
conservative, we have:
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Since the field is proportional to
r
1 and arc elementary length is pro-

portional to rd , then contributions from arcs BC and BC with the same
angles cancel each other, and Eq. (2.1) becomes:
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Eq. (2.2) shows that the integral along the segment AB is cancelled by
the integral along the segment CD, meaning that =E ErA rD namely, the
radial component of the field is independent of the angles.

Can we leverage the above property of the field? The answer is yes.
If one considers a positively charged ray together with a negatively
charged ray, then the resultant field is tangential, with no radial com-
ponent at all, as shown in Fig. 2.1b. More generally, when we consider a
collection of rays with densities whose sum is zero, the resultant field is
tangential. The very meaning of this fact is “life on a sphere”.

Concrete examples for which the field created by sources lives only
on a sphere are current sources entering a (poor) conductor (Eyal and
Raz, 2016 [2]) and creeping flow in a narrow gap between two con-
centric spheres (Goldstein and Eyal, 2018 [1]), generated by several
sources.

Calculation of the potential and field created by a charged ray in 3

As discussed above, we now show that the potential on the sphere
created by point charges can be evaluated equivalently as the potential
created by uniformly charged rays in 3.

Let a ray be parametrized as: = < <r r s s, 0 . Using the su-
perposition principle, the potential at point r should look like this:2
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Fig. 2.1. A semi-infinite charged ray directed to r ; (b) The cancelled radial field in 3 can be related to point charges on sphere S2.
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