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A B S T R A C T

In this work, we analyze different levels of propagation of the Four-wave mixing signal in a strongly driven two-
level system when the stochastic effects of the thermal bath, are considered. First approximation level, given by
an analytical solution valid only for constant pump intensity along the optical path; a second approximation
level as an analytical solution valid for a lineal variation of the pump intensity, and finally, a third level as
numerical solution, which represent the exact case. In all cases, high dependence of the nonlinear propagation
with the chemical concentration, stochastic noise parameters, relaxation times, are studied.

Introduction

The study of the interaction between two-level systems and elec-
tromagnetic fields has been a very important subject in optics due its
applications and usability to explain complex nonlinear phenomena.
Under this scheme, in the analysis of the propagation of an electro-
magnetic signal some phenomena such as the attenuation or amplifi-
cation of the beam, and the dispersion processes, can be better treated
associated with random variables. Particular attention in this frame-
work can be paid to those phenomena that lead to the generation of
phonons, and which effects are explained by the notion of white and
colored noise correlation functions, and/or Markov processes [1].

In view of the importance of gaining a better understanding in these
topics for the propagation of electromagnetic fields in a nonlinear op-
tical medium, we studied the different conditions under which the
signal strength of Four-wave mixing FWM is modified by the always
occurring effects of absorption and scattering themselves. In this work,
the dynamics of such systems are described by the Optical Conventional
Bloch equations (OCBE). Still, the strong interaction of the propagating
wave with a medium can be subject to multiple collisions and the mi-
croscopic nature of the problem becomes complicated [2–8]. To for-
mulate a solution it is necessary to introduce stochastic considerations.
In this work, and under this framework, we assume that the system-
solvent interactions induce random shifts in the Bohr frequency and its
manifestation should correspond to the broadening of the upper level
[9]. Further, the putative effects over the propagation of the fields
along the optical path, are analyzed. In this paper, two approximate

analytical models for the propagation of the FWM signal, and a nu-
merical approximation to a third one, are discussed. The last case is
conveniently associated with a transcendental equation. The con-
sistency of the analytical models as dependent on the corresponding
approximations of the limiting cases they each describe as compared to
the numerical approximation are reviewed. The capability to demon-
strate similar correct descriptions of the problem, were established
within a 10% tolerance with respect to the more complete numerical
model for the analytical solutions, evaluating in this way the extent of
applicability of the underlying parameters and particular considera-
tions of each model.

The effect of the medium is modeled here with the aid of a sto-
chastic broadening of the molecular energy levels. All the approaches
described above are valid in the region ≪S T4 / 12

2 (S: Saturation para-
meter, T2 Transversal relaxation time). Since water solutions of
Malachite Green chloride satisfy this condition, this system is a good
candidate for testing the effects discussed in this work. For this, having
analytic expressions for the propagation of the fields allows us under-
standing the important photonic effects that take place in the interac-
tion. These expressions also help to evaluate which approximations are
better suited to study the propagation of the field under different pu-
tative experimental conditions.

Various works in the same line of research related to the propaga-
tion of electromagnetic fields along the optical path have been per-
formed previously. Boyd et al. [10] studied the effect of the propagation
of fields in a strongly coupled two-state system, developing a model in
which the pump intensity is strictly constant along the optical path. Reif
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et al. [11] developed a propagation model considering three levels of
approximation, but not necessarily making the pump beam constant.
Both models are totally deterministic. Paz and Recamier [12] in-
troduced a propagation model to analyze two analytical solutions for
the study of the propagation of the FWM signal in a strongly driven two-
level system, when the stochastic effects of the solvent are explicitly
considered. In that work, the pump field was treated at all orders but
the probe and signal fields at first order only.

In contrast to this, in the present work, the probe beam is treated to
the second order thus exploring important effects at this level. Thus,
considering perturbationally the probe beam, photonic processes that
generate energy at the frequency of the pump-beam are extracted.
Unlike previous models, the pump beam was attenuated along the op-
tical path and its intensity was never restored.

As demonstrated in this article, most important in this regard for the
description of the signal propagation, are the saturation parameter and
the concentration of the analyte. The most relevant aspect of this work
is its contribution to the understanding of the putative generation of
nonlinear multiphotonic processes induced by the probe beam in the
FWM scheme.

Theoretical considerations

In this work, we describe the time-dependent process of interaction
of molecular systems with a total external electromagnetic field (ra-
diative process) and with a thermal bath (non-radiative process) using
the Liouville-Von Newmann treatment in the semiclassical approx-
imation. The reduced density matrix equation describing the dynamics
behavior, is given by:

̂ ̂ ̂ ̂ ̂∂ = − −ρ i
ħ

H ρ ρ[ , ] Γ ,t (1)

where ̂ ̂ ̂= +H H V0 , with ̂H0 the Hamiltonian for the isolated system
and ̂V the perturbation, given by ̂ = −→ →

V μ E. ; ̂Γ represents the relaxa-
tion matrix that includes the relaxation rates between two-states con-
sidered T1/ 1 and for the induces coherences T1/ 2. The decay rate of the
excited state population and the dephasing rate of the optical transition
must also be included in the analysis whenever the frequency ω1 be-
comes comparable to or smaller than this rates (decay of the levels, T1
effects, and of optical transitions, T2 effects). In this work, we use the
Optical Stochstic Bloch equations (OSBE) to model the dynamical be-
havior of the system, which is given by [13]:

∂ = +ρ t M t ρ t R( ) ( ) ( ) ,t ξ (2)

where M t( )ξ and R are the radiative and non-radiative matrices, re-
spectively. The density matrix for the two-level system, is defined as:
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M t( )ξ is a matrix containing strictly all of the matter–radiation inter-
action details and is defined as:
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and, R is defined as the relaxation matrix associated with the equili-
brium condition, given by:
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We define further the equilibrium effective population ≡ −ρ ρ ρD gg ee
(0) (0) (0),

and the Rabi frequency by the scalar product = → →
μ E t ħΩ . ( )/ba , which

defines the intensity of the coupling between matter and radiation,
connected only to the transition dipole moments →μba, (disregarding in

this case, permanent dipole moments). Here, is defined
→

=
→

+
→

E E E1 2,
with

→
=

→ → →−E t E ik r ω t( ) exp( . )j j j j0 (j=1,2), and = + −ξ iξ t T( )t 2
1; T1 and T2

are defined as longitudinal and transversal relaxation times, respec-
tively. In this methodology, we consider that the system-solvent inter-
actions induce random shifts in the Bohr frequency, given by

= +ξ t ω σ t( ) ( )0 , where ω0 is the Bohr-frequency for the isolated two-
level molecular system; σ t( ) integrates all the stochasticity of the pro-
blem. Our study is localized in the Four-wave mixing FWM spectro-
scopy, where the most general process involves the interaction of three
laser fields with wave vector

→ →
k k,1 2 and

→
k3 and frequencies ω ω,1 2 and

ω3, respectively, with a nonlinear medium. Here,
→
kS and ωS are given by

any linear combination of the applied wave-vectors and frequencies.
Solving Eq. (2) for a two-level molecular system, the Fourier compo-
nents of the coherences at the indicated frequencies, are given by:
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with =m 1, 2, 3 and where λξ is given by:
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1 12 , and where considered va-
lues of = −n 0, 1, 1 for pump, probe and FWM signal, respectively. For
simplicity, we define ≡−L Lξ ξ, 1 ,2 for the probe. The zero-frequency
Fourier component is given by:
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1 2 is defined as the saturation parameter, associated to pump
beam. Next, a perturbative method at all orders in the pump- beam,
second order in the probe-beam, and at first order in the generated
FWM signal, is used to solve the equations. The function fξ is given by:
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Given that the coherences, Eq. (3), are dependent of the stochastic
variable ξ t( ) (through of Lξ j, ), it is necessary to establish an average
over all realizations of the random variables as 〈 〉ρ ω( )ba k ξ . In order to
carry out the mentioned above averages, Van Kampen [14] has pro-
posed a method where he formally solves the stochastic differential
equation assuming it to be deterministic and then takes an average over
the realizations of the stochastic variable. A different approach consists
in taking the same average before solving the Optical Bloch equations
OBE. In the latter case, the set of differential equations obtained can be
described as an Ornstein-Uhlenbeck process (OUP), the set of equations
solved and one obtains an equation for the average of ρ ω( )ba k . In the
present work, we solve OBE as if they were deterministic and then,
acknowledging the fact that ρ ω( )ba k depends upon the realizations of
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