### Accepted Manuscript

In<sub>0.5</sub>Ga<sub>0.5</sub>As Bilayer Quantum Dot Heterostructure for mid-infrared photodetection

Debiprasad Panda, Akshay Balgarkashi, Sandeep Madhusudan Singh, Saikalash Shetty, Harshal Rawool, Subhananda Chakrabarti

PII: S1350-4495(18)30395-5

DOI: https://doi.org/10.1016/j.infrared.2018.09.028

Reference: INFPHY 2710

To appear in: Infrared Physics & Technology

Received Date: 4 June 2018

Revised Date: 17 September 2018 Accepted Date: 21 September 2018



Please cite this article as: D. Panda, A. Balgarkashi, S.M. Singh, S. Shetty, H. Rawool, S. Chakrabarti, In<sub>0.5</sub>Ga<sub>0.5</sub>As Bilayer Quantum Dot Heterostructure for mid-infrared photodetection, *Infrared Physics & Technology* (2018), doi: https://doi.org/10.1016/j.infrared.2018.09.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## **ACCEPTED MANUSCRIPT**

# $In_{0.5}Ga_{0.5}As \ Bilayer \ Quantum \ Dot \ Heterostructure \ for \\ mid-infrared \ photodetection$

Debiprasad Panda, Akshay Balgarkashi, Sandeep Madhusudan Singh, Saikalash Shetty, Harshal Rawool, and Subhananda Chakrabarti\*

Department of Electrical Engineering, Indian Institute of Technology Bombay, INDIA

#### **Abstract:**

Strain-coupled Bilayer quantum dot (QD) heterostructures have taken over single layer QD structures due to their longer wavelength emission, homogeneity in dot size distribution and optimum dot density. The optoelectronic characteristics of In<sub>0.5</sub>Ga<sub>0.5</sub>As Bilayer QDIP along with photoresponse in the mid-infrared regime have been shown in this article. The heterostructure is grown with a 6.5 nm GaAs spacer between the seed and top QD layers, following a new growth strategy. The monolayer coverage for top OD layer is less compared to the seed layer. However, a similar QD size has been observed for both layers due to the existing strain propagation from seed to top QD layer through the GaAs spacer. Moreover, the presence of strain reducing In<sub>0.15</sub>Ga<sub>0.85</sub>As capping layer on the top QD has an active participation in preserving the QD size, inhibiting In-Ga intermixing. The room temperature photoluminescence (PL) emission peak from the device is obtained near communication wavelength (1.31 µm). The lower full width half maximum (FWHM) of 21 meV and higher activation energy of 326 meV for the QDIP attribute homogeneity in dot size distribution and higher barrier potential respectively. The proposed Bilayer QDIP has a broad spectral response in the mid-infrared regime (6-8 µm) with very low dark current density (4E-7 A/cm<sup>2</sup>) and high responsivity (33 mA/W) at -2V and 75K. The measured efficiency for the QDIP is 0.18%.

**Keywords:** InGaAs, Bilayer, Quantum dot, Photoluminescence, Spectral response.

#### Download English Version:

# https://daneshyari.com/en/article/11032104

Download Persian Version:

https://daneshyari.com/article/11032104

<u>Daneshyari.com</u>