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a b s t r a c t 

When powerful numerical tools like the finite element method encounter their limits 

for the evaluation of physical systems it is very common to use surrogate models as an 

approximation. There are many possible choices concerning the model approach, among 

which Gaussian process models are the most popular ones due to their clear statistical 

basis. A very desirable attribute of such surrogates is a high flexibility for making them 

applicable to a great class of underlying problems while obtaining interpretable results. 

To achieve this Gaussian processes are used as basis functions of an additive model in 

this work. Another important property of a surrogate is stability, which can be especially 

challenging when it comes to the estimation of the correlation parameters. To solve this 

we use a Bayesian approach where a reference prior is assigned to each component of 

the additive model assuring robust correlation matrices. Due to the additive structure of 

the model a simplified parameter estimation process is proposed that reduces the usually 

high-dimensional optimization problem to a few sub-routines of low dimension. Finally, 

we demonstrate this concept by modeling the magnetic field of a magnetic linear position 

detection system. 

© 2018 The Author(s). Published by Elsevier Inc. 
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1. Introduction 

1.1. Background 

The problem of finding an approximation for time-expensive computer models is especially common when dealing with 

multivariate optimization tasks in industrial applications. Such a surrogate model typically depends on all k input variables 

simultaneously, i.e. y = f (x 1 , . . . , x k ) . With rising dimension the necessary full space analysis to construct such a model 

becomes intractable due to the high number of required sample points. One way to avoid this curse of dimension is the 

application of simplified models with an additive structure. 
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The basis of additive models is the fact that each integrable function can be decomposed into summands with different 

dimensions of the form [1,2] 

y := f ( x ) = f 0 + 

k ∑ 

i =1 

f i (x i ) + 

∑ 

i< j 

f i j (x i , x j ) + · · · + f 12 ...k (x 1 , . . . , x k ) , (1) 

where x = ( x 1 , . . . , x k ) 
T and y is the dependent output (response). This form is known as functional ANOVA representation 

[3] but also referred to as high dimensional model representation (HDMR) [4,5] . To avoid overfitting simpler models are 

often preferred to more complex ones. A famous class of models based only on first order terms f i ( x i ); i = 1 , . . . , k ; and an 

intercept f 0 , thus less prone to overfitting, are the generalized additive models (GAM) [6] , defined by 

E (Y | x 1 , . . . , x k ) = f 0 + 

k ∑ 

i =1 

f i (x i ) , (2) 

where the f i ( · ) are smooth basis functions and Y denotes the random response variable. Generally, regression models like 

GAM from classical statistics are not suitable for modeling computer experiments due to the lack of a well-defined random 

error [7] . Instead Gaussian process (GP) models, also referred to as Kriging models, are the approach of choice in this field. 

In its original form the correlation matrix R of such a process is defined by the product correlation rule, i.e. �k 
i =1 

R i | θi ,νi 
based 

on predefined one-dimensional correlation functions r i ( x, x ′ ) := r ( x, x ′ | θ i , ν i ). While the roughness parameters ν i are usually 

fixed and assumed constant for all dimensions, the range parameters θ i need to be estimated. This estimation is again based 

on models of the form y = f (x 1 , . . . , x k ) and hence struggles with the issues mentioned above. However, due to some basic 

properties of GPs it is also possible to build the correlation function within the framework of additive models, referred to 

as additive Gaussian process (AGP) modeling. This idea has originally been proposed by [8] and [9] , using only first order 

terms in the sense of GAM and allowing interactions of all orders, respectively. An excellent overview of the advantages of 

the additive structure compared to usual GP models with product correlations, can be found in [10] . 

However, a general disadvantage of GP modeling that also remains in the additive structure is the instability of the 

likelihood when it comes to the estimation of the correlation parameters [11] . This happens if the parameters are either 

very large yielding a singular correlation matrix, but also if the matrix is near-diagonal, i.e. for estimates close to zero. A 

powerful approach proposed to stabilize these estimates is the use of non-informative reference priors [12] . These priors 

where first used in [13] for isotropic correlation functions as an improvement to Jeffrey’s prior, which often yields improper 

posterior distributions. Subsequently, this approach was extended in [14] by also including a nugget effect, but still in an 

isotropic framework with a single range parameter. While most of this work was motivated by spatial data problems, the 

use of reference priors for modeling computer experiments based on grid designs with anisotropic product-correlations 

was investigated in [15] . Finally, the concept of robust estimation of correlation parameters in simulation studies by using 

reference priors for general latin hypercube designs was introduced in [12] . 

In this work we combine second order AGPs with reference priors to achieve both, the increasing flexibility of addi- 

tive models and the stabilization of correlation parameter estimates. Furthermore, we test sampling designs with different 

attributes to determine optimal layouts for the special structure of these models. We show that the additive structure en- 

ables a simplified estimation scheme which is based on the relaxed maximum likelihood method [8] . In this case, the 

optimization for parameter estimation reduces to a few low-dimensional problems, which are easier to handle than a single 

high-dimensional one. After validating the proposed method for some well-known test functions we also demonstrate its 

predictive power for magnetic field modeling - a very important part of magnetic sensor system design. 

1.2. Additive Gaussian process models 

Let Z( x ) , x ∈ R 

k be a Gaussian process, i.e. Z( x ) ∼ N(μ( x ) , K = σ 2 R ) with mean function μ( · ), process variance σ 2 and 

correlation matrix R , generated by a correlation function r( x i , x j ) , x i , x j ∈ R 

k . AGP models are based on the fact that the 

direct sum, as well as the tensor product of covariance functions are again covariance functions: let Z i , i = 1 , 2 , 3 , be inde- 

pendent GPs with 

Z 1 ∼ N(μ1 , K 1 ) 

Z 2 ∼ N(μ2 , K 2 ) (3) 

Z 3 ∼ N(μ3 , K 1 K 2 ) , 

then it holds that Z := Z 1 + Z 2 + Z 3 is again a GP with 

Z ∼ N (μ1 + μ2 + μ3 , K 1 + K 2 + K 1 K 2 ) . (4) 

For the additive structure in Eq. (1) this means that each component function is independently modeled as a GP. 

In a first step, each dimension gets assigned a univariate correlation function r i (x i , x 
′ 
i 
) , i = 1 , . . . , k , where x = 

(x 1 , . . . , x k ) 
T 
, x ′ = (x ′ 1 , . . . , x ′ k ) 

T ∈ R 

k are two different sam ple points and the process variances are assumed to be equal for 

all dimensions. The first order GPs f i can then be simply defined as 

f i ∼ N (μi , σ
2 R i ) (5) 
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