Author's Accepted Manuscript Revealing Conducting Filament Evolution in Low Power and High Reliability Fe₃O₄/Ta₂O₅ Bilayer RRAM Chia-Fu Chang, Jui-Yuan Chen, Guan-Min Huang, Ting-Yi Lin, Kuo-Lun Tai, Chih-Yang Huang, Ping-Hung Yeh, Wen-Wei Wu www.elsevier.com/locate/nanoenergy PII: S2211-2855(18)30673-6 DOI: https://doi.org/10.1016/j.nanoen.2018.09.029 Reference: NANOEN3034 To appear in: Nano Energy Received date: 1 August 2018 Revised date: 12 September 2018 Accepted date: 13 September 2018 Cite this article as: Chia-Fu Chang, Jui-Yuan Chen, Guan-Min Huang, Ting-Yi Lin, Kuo-Lun Tai, Chih-Yang Huang, Ping-Hung Yeh and Wen-Wei Wu, Revealing Conducting Filament Evolution in Low Power and High Reliability Fe₃O₄/Ta₂O₅ Bilayer RRAM, *Nano Energy*, https://doi.org/10.1016/j.nanoen.2018.09.029 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. #### **ACCEPTED MANUSCRIPT** # Revealing Conducting Filament Evolution in Low Power and High Reliability Fe_3O_4/Ta_2O_5 Bilayer RRAM Chia-Fu Chang^{a#}, Jui-Yuan Chen^{a#}, Guan-Min Huang^a, Ting-Yi Lin^a, Kuo-Lun Tai^a, Chih-Yang Huang^a, Ping-Hung Yeh^d and Wen-Wei Wu^{a, b, c}* ^aDepartment of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan, 300 ^bCenter for the Intelligent Semiconductor Nano-system Technology Research, Hsinchu, Taiwan, 300 ^cFrontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, 300 ^dDepartment of Physics, Tamkang University, 151 Ying Chuan Road, Taipei, Taiwan, 251 *Correspondence and requests for materials should be addressed to W.W.W (email: WWWu@mail.nctu.edu.tw). Keywords: RRAM, Ta₂O₅/Fe₃O₄ bilayer, Conducting Filaments, Low power consumption, Reliability, *in/ex-situ* TEM #### **Abstract** In this work, we used the polycrystalline- Fe_3O_4 to improve the reliability of the $Ag/Ta_2O_5/Pt$ resistive random access memory (RRAM). In both the $Ag/Ta_2O_5/Fe_3O_4/Pt$ and $Ag/Fe_3O_4/Ta_2O_5/Pt$ structures, the switching properties for these bilayer RRAMs were measured in atmosphere and vacuum environments. The results demonstrated that the humidity would affect the Ag filament formation in different environments, and the Ta_2O_5 and Fe_3O_4 interface ^{*}These authors contributed equally to this work. #### Download English Version: ## https://daneshyari.com/en/article/11032171 Download Persian Version: https://daneshyari.com/article/11032171 <u>Daneshyari.com</u>