FISEVIER

Contents lists available at ScienceDirect

Phytochemistry

journal homepage: www.elsevier.com/locate/phytochem

Laevifins A–G, clerodane diterpenoids from the Bark of *Croton oblongus* Burm.f.

Ahmad Nazif Aziz^{a,b}, Nor Hadiani Ismail^{b,*}, Siti Nadiah Abdul Halim^c, Chung Yeng Looi^{d,e}, El Hassane Anouar^f, Moses K. Langat^{g,h}, Dulcie Mulholland^{g,h}, Khalijah Awang^c

- ^a School of Fundamental Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- ^b Atta-ur-Rahman Institute for Natural Products Discovery, Level 9, FF3, Universiti Teknologi MARA Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
- ^c Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- ^d Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- e Faculty of Health and Medical Sciences, School of Biosciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Malaysia
- f Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, 11942, Al Kharj, Saudi Arabia
- ⁸ Natural Products Research Group, Department of Chemistry, University of Surrey, Guildford, GU2 7XH, Surrey, United Kingdom
- ^h School of Chemistry and Physics, University of Natal, Durban, 4041, South Africa

ARTICLE INFO

Keywords: Croton oblongus Euphorbiaceae Laevifins A – G Cytotoxicity

ABSTRACT

A phytochemical investigation of the stem barks of the Malaysian *Croton oblongus* Burm.f. (Syn. *Croton laevifolius* Blume) (Euphorbiaceae) yielded seven previously undescribed *ent-neo*-clerodane diterpenoids, laevifins A - G and the known crovatin (3). Structures were established by a combination of spectroscopic methods including HRESIMS, NMR spectroscopy and X-ray crystallography. The absolute configuration of crovatin and laevifins A-G was established by comparison of experimental ECD and theoretical TDDFT ECD calculated spectra. This is the first report on the occurrence of the sesquiterpenoid cryptomeridiol in a *Croton* species. *In vitro* cytotoxicity assays on laevifins A, B and G showed moderate activities against the MCF-7 cancer cell line (IC₅₀ 102, 115 and $106\,\mu\text{M}$, respectively) while β -amyrin and acetyl aleuritolic acid showed good anti-inflammatory activity on the LPS-induced NF- κ B translocation inhibition in RAW 264.7 cells assay with IC₅₀ values of 23.5 and 35.4 μ g/mL, respectively.

1. Introduction

The genus *Croton* is the second largest of the Euphorbiaceae family, comprising about 1300 species distributed in tropical and subtropical world regions (Salatino et al., 2007). Several species are used worldwide as traditional medicines for various conditions, including gastric diseases (Craveiro et al., 1980), snake bites (Lima et al., 2010) wound healing (Pieters et al., 1993; Rao et al., 2007), rheumatism and ulcers (Rao et al., 2007; Nardi et al., 2003), diarrhoea and cancer (Rao et al., 2007), malaria (Thuong et al., 2012), diabetes, gastrointestinal disturbances and high cholesterol (Campos et al., 2002). In East Africa, Croton species are used traditionally as dietary additives and the smoke is inhaled to treat chest complaints (Aldaher et al., 2017). The genus *Croton* is known to produce a range of compounds including terpenoids, alkaloids and flavonoids, some of which have been shown to possess anti-cancer, anti-inflammatory, anti-ulcer, anti-malarial and anti-oxidant activities (Salatino et al., 2007).

Croton oblongus Burm.f. (Syn. Croton laevifolius Blume) (Euphorbiaceae) is a small tree found throughout the Malaysian peninsula, Borneo and Thailand (Corner, 1988; Whitmore, 1972). In the Malaysian Peninsula it is also known as "tapin batu", "kayu meroyan", "melokan", "mawai" and "kemesak" and is traditionally used as a postpartum medication and for the treatment of ulcers (Corner, 1939; Burkill, 1935). Two triprenylated dihydrostilbenes have been reported from the flowering parts of this species (Ahmat et al., 2007). In this study, the stem bark was investigated in order to isolate bioactive constituents.

2. Results

The n-hexane and CH_2Cl_2 extracts were separated using chromatographic methods. The CH_2Cl_2 extract yielded seven previously undescribed *ent-neo*-clerodane-type diterpenoids (1, 2, 4–8) and the known crovatin 3 (Moulis et al., 1992), acetyl aleuritolic acid, β -

E-mail address: norhadiani@salam.uitm.edu.my (N.H. Ismail).

^{*} Corresponding author.

A.N. Aziz et al. Phytochemistry 156 (2018) 193-200

Table 1 ¹H NMR spectroscopic data (500 MHz, CDCl₃) of compounds 1–4 (*J* in Hz).

¹ H NMR spectroscopic data (500 MHz, CDCl ₃) of compounds 1–4 (<i>J</i> in Hz).				
Proton position	1	2	3	4
1α	2.45 m	1.78 m	1.84 m	1.82 m
1β	2.62 m	2.17 m	2.32 m	2.48 m
2α	6.02 m	1.83 m	1.56 m	1.52 m
2β	_	1.97 m	1.95 m	1.93 m
3	6.03 m	4.10 dd (5.0,	4.48 brt	4.53 t
		2.0)	$(W_{1/2} = 11.8)$	(5.0)
4	_	3.72 brt	2.83 dd (5.7, 1.3)	2.91 d
		$(W_{1/2} = 4.7)$		(5.0)
6α	2.20 m	1.64 dd (13.0,	1.43 ddd (13.5,	1.57 m
		4.5)	5.5, 1.5)	
6β	2.36 m	1.78 m	2.02 dt (13.5, 6.0)	2.04 d
_				(5.8)
7α	1.28 m	1.70 m	1.34 m	2.41 m
7β	1.85 m	1.26 m	1.70 m	2.41 m
8	1.83 m	1.81 m	1.71 m	_
10	2.21 m	2.27 dd (13.5,	2.38 m	2.48 m
		3.0)		
11α	2.34 m	2.30 m	2.13 m	2.40 m
11β	2.34 m	2.30 m	2.23 m	2.40 m
12	5.34 t (8.0)	5.35 t (8.5)	5.31 dd (9.0, 7.0)	5.36 t
				(8.1)
14	6.33 b	6.34 t (1.0)	6.37 b ^a	6.37 m
	$(W_{1/2} = 3.9)$			
15	7.39 ^a	7.38 ^a	7.36 t (2.0)	7.36 m
16	7.39 ^a	7.38 ^a	7.37 b ^a	7.39 m
17a	1.00 d (6.5)	0.99 d (6.5)	0.93 d (7.0)	4.85 s
17b	_	_	_	4.78 s
19	_	_	5.11 d (1.0)	5.23 s
20	5.66 s	5.60 brs	5.26 brs	5.29 s
21 -OCH ₃	3.82 s	3.68 s	3.69 s	3.69 s
4-OH	2.96 b			

a Peaks superimposed.

amyrin, β -amyrenone, cryptomeridiol, pachypodol and β -sitostenone from the n-hexane extract. The structures and absolute configurations of the compounds were established using spectroscopic methods including HRESIMS, NMR spectroscopy, X-ray crystallography and ECD measurements coupled with TDDFT ECD calculations and structures of previously reported compounds were confirmed by comparison against literature data.

Compound 1, laevifin A, was isolated as colourless crystals. HRESIMS showed a $[M + H]^+$ peak at m/z 389.1609 (calcd. 389.1600) establishing the molecular formula as $C_{21}H_{24}O_7$ with ten degrees of unsaturation. The IR spectrum showed absorption bands for a hydroxyl group (3504 cm⁻¹), carbonyl (1749 and 1714 cm⁻¹), C-O of esters $(1249 \text{ and } 1163 \text{ cm}^{-1})$ and cyclic ethers $(1096 \text{ and } 1030 \text{ cm}^{-1})$ and a β-substituted furan ring (3145, 1505, 875 cm⁻¹). The ¹H NMR spectrum (Table 1) showed the characteristic resonances of a β -substituted furan ring at $\delta_{\rm H}$ 7.39 (bs, 2H) and $\delta_{\rm H}$ 6.33 (bs, $W_{1/2} = 3.9\,{\rm Hz}$). The ¹³C NMR spectrum (Table 3) showed twenty-one carbon resonances including one methyl ($\delta_{\rm C}$ 16.4), one methoxy ($\delta_{\rm C}$ 53.0), four methylene ($\delta_{\rm C}$ 25.3, 29.7, 29.8, 38.8), two methine ($\delta_{\rm C}$ 36.8, 39.3), an oxymethine ($\delta_{\rm C}$ 74.9), a fully substituted oxygenated carbon ($\delta_{\rm C}$ 73.2), two quaternary carbons (δ_C 49.1 and 50.6), two carbonyls (δ_C 171.2 and 174.8), a β -substituted furan ring (δ_C 108.1, 127.4, 139.1 and 143.9), a disubstituted alkene ($\delta_{\rm C}$ 126.2 and 129.4) and one unusual downfield signal of a dioxygenated methine carbon at $\delta_{\rm C}$ 105.0. The ¹H and ¹³C NMR chemical shifts were in good agreement with those of furoclerodane diterpenoids with a 12, 20-ether linkage and a 19, 20-lactone ring, accounting for the downfield shift of the C-20 resonance ($\delta_{\rm C}$ 105.0), as reported for compounds such as croverin (Fujita et al., 1980), crotonolide D (Liu et al., 2014) and sonderianin (Craveiro et al., 1981). The HMBC spectrum (Fig. 1a) showed correlations between the H-12 ($\delta_{\rm H}$ 5.34, t, J = 8.0 Hz) and C-13 ($\delta_{\rm C}$ 127.4), C-14 ($\delta_{\rm C}$ 108.1), C-16 ($\delta_{\rm C}$ 139.1) and C-9 (δ_{C} 49.1) resonances. In addition, C-12 (δ_{C} 74.9) showed a correlation with H-20 ($\delta_{\rm H}$ 5.66, brs) which, in turn, correlated with C-

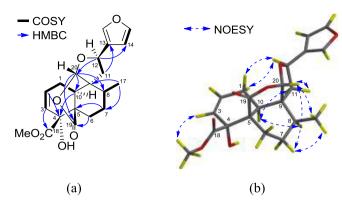


Fig. 1. (a) Selected COSY, HMBC (b) NOESY correlations of compound 1.

8 ($\delta_{\rm C}$ 36.8), C-9 ($\delta_{\rm C}$ 49.1), C-10 ($\delta_{\rm C}$ 39.3) and C-19 ester carbonyl ($\delta_{\rm C}$ 171.2) resonances. The carbonyl carbon (C-19) also showed correlations with both H-6 and H-10, confirming the presence of the 12,20ether and 19,20-lactone rings. The COSY spectrum (Fig. 1a) showed the following coupled systems: H-10/H₂-1/H-2 ($\delta_{\rm H}$ 6.02)/H-3 ($\delta_{\rm H}$ 6.03), indicating the presence of an alkene double bond at C-2; two H-6/two H-7/H-8/3H-17; and two H-11/H-12. Finally, the HMBC spectrum confirmed the presence of a methyl ester and hydroxy group at C-4 by correlations observed between the C-18 and H-3 and the downfield C-4 $(\delta_{\rm C} 73.2)$ and H-2 resonances. Compound 1 has a similar structure to that of croverin, an ent-neo-clerodane from C. levatii (Fujita et al., 1980) but the alkene double bond occurs at C-3 in croverin as compared to C-2 in 1. Moreover, 1 has an additional hydroxy group at C-4. The relative configuration of C-12 was deduced to be R* by the NOESY correlation observed between H-12 and H₂-1 (Fig. 1b). The H-20 resonance showed correlations with the H-7 β and Me-17 resonances indicating that the methyl group is in the β -orientation which placed H-8 in α -orientation, enabling assignment of the configuration at C-20 as S*. Furthermore, H-8 showed correlations with H-7 α and H-10 proton resonances, while C-10 also showed a correlation with the C-4-OH proton which determined the configurations at C-10 and C-4. The relative configuration was confirmed by single-crystal X-ray diffraction. The ORTEP perspective drawing is shown in Fig. 2. The absolute configuration of 1 was determined by ECD studies. The measured ECD spectrum of 1 compares well with the theoretical calcd. spectrum for ent-neo-clerodane, with a negative Cottons' effect at λ ($\Delta \varepsilon$) 236 (-0.3) and a positive Cottons' effect at λ ($\Delta \varepsilon$) 196 (+20.2), thus establishing the configurations at the chiral centres as 4R,5R,8S,9S,10S,12R,20S and confirming the structure as an ent-neo-clerodane (Fig. 3).

The HRESIMS of compound **2**, laevifin B, isolated as white solid gave a [M + H]⁺ peak at m/z 391.1772 (calcd. 391.1757) indicating a molecular formula of C₂₁H₂₆O₇. Compound **2** differed from **1** only in the structure of ring A. In **2**, the C-2 double bond was not present, the C-4 hydroxy group was absent, a 3 β -hydroxy group was present and the

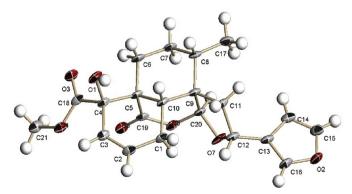


Fig. 2. ORTEP perspective structure of compound 1.

Download English Version:

https://daneshyari.com/en/article/11032225

Download Persian Version:

https://daneshyari.com/article/11032225

Daneshyari.com