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A B S T R A C T

Recently, there have been significant advancements in the development of exact methods and metaheuristics for
partitioning signed networks. The metaheuristic advancements have led commonly to adverse implications for
multiple restart (multistart) relocation heuristics for these networks. Most notably, it has been reported that
multistart relocation heuristics are not computationally feasible for large signed networks with thousands or tens
of thousands of vertices. In this paper, we show that combining multistart relocation heuristics with tabu search
or variable neighborhood search can rapidly produce partitions of the vertices of signed networks that are
competitive with those obtained using existing metaheuristics.

1. Introduction

The problem of partitioning the vertices of a signed network has
applications in a variety of different scientific contexts. This includes
partitioning for signed social networks studied within the general rubric
of structural balance theory with clear substantive concerns originally
articulated by Heider (1946) and later extended by Cartwright and
Harary (1956); Davis (1967), and Doreian and Mrvar (1996, 2009).
This partitioning is important for testing substantive theories (Doreian
and Mrvar, 2014), adapting methods (Doreian, 2008), and tracking
imbalance over time (Doreian and Mrvar, 2015). Of additional interest
is the study of signed networks in other contexts and fields (Facchetti
et al., 2011, Huffner et al., 2010; Yang et al., 2007; Kim et al., 2014).
Further, Aref et al. (2017) and Levorato et al. (2017) recently noted
examples in the physical sciences including: (i) chemistry: the study of
fullerene graphs pertaining to carbon allotropes (Došlić and Vukičević,
2007), (ii) biology: measuring the distance of a biological network from
monotonicity (Iacono et al., 2010), and (iii) physics: the study of energy
states (Kasteleyn, 1963). In the arena of political and social science,
signed networks have been analyzed to investigate voting patterns of
the United Nations General Assembly (Doreian et al., 2013; Doreian and
Mrvar, 2015). Recent literature reviews pertaining to the analysis of
signed networks are provided by Tang et al. (2016) and Traag et al.
(2018).

For all these applications, getting the partitioning done correctly
and efficiently is important, especially so when the available signed
network data sets are larger. Broadly, there are a variety of alternative
approaches for community detection in the context of signed networks.
These include, but are not necessarily limited to, modularity-based
approaches (Anchuri and Magdon-Ismail, 2012), spectral clustering
(Kunegis et al., 2010), mixture-modeling (Chen et al., 2013), and dy-
namic model-based algorithms (Yang et al., 2007). Our focus herein is
on direct partitioning approaches for signed networks (Doreian and
Mrvar, 1996; Bansal et al., 2004; Traag and Bruggeman, 2009) with
emphasis on methods that have great potential for partitioning larger
signed networks.

Our focus in this paper is on undirected signed networks associated
with a vertex set V = {1,…, n}, edge set E = {u, v}, and edge weights
wuv (for all {u, v} ∈ E).1 The edge set is partitioned into two subsets E+

and E−, which correspond to positive and negative edges, respectively.
There are several common formulations of optimization problems for
the partitioning of signed networks. Perhaps the most general of these is
the correlation clustering problem, where the goal is to partition the
vertex set into clusters to minimize the total level of frustration or in-
consistency in the network. While recognizing that there are alternative
objective functions, such as weighed functions and positive and nega-
tive inconsistencies (Doreian and Mrvar, 1996) and Hamiltonians
(Traag and Bruggeman, 2009), we restrict our attention to the popular
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criterion of minimizing the total level of frustration.
We note that the frustration index is formally identical to the line

index of imbalance used in structural balance partitioning but only for
two clusters. Moving beyond partitions having only two clusters is
critical. With correlation clustering, the number of clusters is not spe-
cified in advance. Correlation clustering is based on principles of weak
structural balance described by Davis (1967) building on the work of
Cartwright and Harary (1956). Frustration occurs when two vertices
sharing a positive edge are in different clusters, or when two vertices
sharing a negative edge are in the same cluster. Mathematical pro-
gramming formulations for the correlation clustering problem have
been described by Figueiredo and Moura (2013) and Aref et al. (2017).
Metaheuristics for large networks have also been proposed and include
genetic algorithms (Zhang et al., 2010) and iterated local search
(Levorato et al., 2017).

Some authors have focused on a variation of the correlation clus-
tering problem whereby a desired number of clusters, K, is prespecified
(Brusco and Steinley, 2010; Doreian and Mrvar, 1996; Giotis and
Guruswami, 2006). A branch-and-bound algorithm for this K-balance
partitioning problem was proposed by Brusco and Steinley (2010);
however, it is only scalable for small networks (n < 30). Preferable
exact approaches based on mathematical programming have been
proposed by Figueiredo and Moura (2013) and Aref et al. (2017). For
larger problems, Doreian and Mrvar (1996) proposed a relocation
heuristic. The special case of K = 2 for the K-balance partitioning
problem is of considerable theoretical interest because it corresponds to
minimization of the frustration index via a partition of the vertex set so
as to obtain the minimum number of edges that must be removed so as
to bring the network into balance. Aref et al. (2017) present a formal
treatment of this problem within a graph coloring framework and
provide an efficient exact solution approach using integer linear pro-
gramming.

Despite advancements in the development of exact procedures (Aref
et al., 2017; Brusco and Steinley, 2010; Brusco et al., 2011; Figueiredo
and Moura, 2013), heuristic procedures remain useful for the parti-
tioning of large signed networks (e.g., n > 1000). The relocation
heuristic developed by Doreian and Mrvar (1996) is one of the most
general heuristic procedures for partitioning signed networks. It begins
with an initial (often randomly generated) partition that is refined by
two local-search operations: (i) relocation of each vertex from its cur-
rent cluster to one of the other clusters, and (ii) pairwise interchanges
(or exchanges) of the cluster memberships for each pair of vertices that
are not currently in the same cluster. The implementation of the re-
location heuristic in the Pajek software system (see de Nooy et al.,
2011) has been shown to perform well on small real-world instances of
K-balance partitioning problems (Brusco and Steinley, 2010; Figueiredo
and Moura, 2013); however, its performance deteriorated somewhat for
synthetic random networks with roughly 50 vertices (Figueiredo and
Moura, 2013). Of greater concern is the reported computational im-
practicality of the relocation heuristic for problems with n > 1000
vertices (Levorato et al., 2017). This problem needs to be addressed.

In an effort to tackle large instances of correlation clustering and K-
balance partitioning problems, several researchers have focused on the
development of metaheuristics such as genetic algorithms (Goldberg,
1989), greedy randomized adaptive search procedure (GRASP: Feo and
Resende, 1995), variable neighborhood search (Hansen and
Mladenovic, 1997), and iterated local search (Lourenco et al., 2003,
2010). More specifically, genetic algorithm approaches have been de-
signed by Zhang et al. (2008) and Ma et al. (2015). Drummond et al.
(2013) obtained promising results with the GRASP method. Most re-
cently, however, Levorato et al. (2017) showed that their im-
plementation of iterated local search convincingly outperformed the
greedy relocation heuristics of Doreian and Mrvar (1996) and Elsner
and Schudy (2009), GRASP, and an implementation of variable
neighborhood search.

Our specific operational goals in this paper are twofold. First, we

demonstrate that an efficient multistart implementation of the reloca-
tion heuristic is often scalable for networks with far more than 1000
vertices. Second, and more importantly, we show that the relocation
heuristic is also an effective engine for metaheuristics for K-balance
partitioning and, by extension, correlation clustering. More specifically,
we recommend a two-phase approach. The first phase uses the multi-
start relocation heuristic to establish a good initial solution and either
tabu search (Glover, 1989, 1990; Glover and Laguna, 1993) or variable
neighborhood search (Mladenovic and Hansen, 1997) is used in the
second phase to refine the solution. We evaluate this procedure using
test problems considered by Levorato et al. (2017), which are slices of
the Slashdot zoo data (Leskovec et al., 2010). We also apply the method
to the full Slashdot zoo network and the Wiki elections data (Leskovec
et al., 2010). Our results compare very favorably to the methods eval-
uated by Levorato et al. (2017). Moreover, we show that high-quality
solutions are achievable using far fewer clusters than reported by
Levorato et al. (2017).

Section 2 presents a formal presentation of the K-balance parti-
tioning problem. This section also includes a description of the re-
location heuristic, tabu search, and variable neighborhood search pro-
cedures. Section 3 presents an evaluation of the two-phase procedure
using the test problems from the Levorato et al. (2017) study. The paper
concludes in section 4 with a summary of the findings and suggestions
for future research.

2. Generalized structural balance partitioning (K-balance
partitioning)

2.1. The optimization problem

We recall our previous definitions of V, E+, E−, and wuv as the set of
n vertices, set of positive undirected edges, set of undirected edges, and
edge weights, respectively. The K-balance partitioning problem seeks a
partition, P = {S1, …, SK}, of the vertex set into K ≥ 2 clusters, where
Sk contains the vertices assigned to cluster k for all 1 ≤ k ≤ K clusters.
The goal to find the partition P from the set of all possible partitions (Π)
of n vertices into K clusters so as minimize the following objective
criterion function:
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The first term in Eq. (1) is a summation of the weights of vertex
pairs {u, v} whereby u and v are both in the same cluster and are as-
sociated with a negative edge. The second term in the equation is the
summation of the weights of vertex pairs {u, v} whereby u and v are in
different clusters and are associated with a positive edge. Therefore, the
objective criterion function value, Z(P), is a measure of the total amount
of inconsistency with perfect structural balance.

There are several possible exact solution approaches for finding the
partition P that minimizes Z(P). One approach, complete enumeration,
is to compute Z(P) for all partitions P ∈ Π and select the partition that
yields the minimum value. The number of partitions in Π is a Stirling
number of the second kind and precludes complete enumeration for
even modest values of n and K (e.g., n = 20 and K = 4). Alternatively,
an implicit enumeration scheme based on branch-and-bound pro-
gramming was developed by Brusco and Steinley (2010); however, it
too is limited to relatively small problems. Perhaps the most robust
exact procedure is based on mixed integer linear programming
(Figueiredo and Moura, 2013), yet this approach is also limited to
problems with n < 50. In light of the limitations of extant exact pro-
cedures, there is a necessary reliance on heuristic methods for large
problems.
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